Embedded Systems

Please indicate your name, group number, and discussion slot tutor. Only one submission per group is necessary.

Problem 1: Periodic Scheduling

For each of the following tasks sets, (1) determine whether an EDF-schedule and/or an RM-schedule exists, and (2) formally prove your answer.

$$
\begin{array}{lll}
\Gamma=\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\} & T_{1}=D_{1}=3 & C_{1}=1 \\
& T_{2}=D_{2}=4 & C_{2}=2 \\
& T_{3}=D_{3}=8 & C_{3}=1 \\
\Delta=\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\} & T_{1}=D_{1}=2 & C_{1}=1 \\
& T_{2}=D_{2}=3 & C_{2}=1 \\
& T_{3}=D_{3}=4 & C_{3}=1 \\
\Pi=\left\{\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right\} & T_{1}=D_{1}=2 & C_{1}=1 \\
& T_{2}=D_{2}=5 & C_{2}=1 \\
& T_{3}=D_{3}=8 & C_{3}=2 \\
& T_{4}=D_{4}=20 & C_{4}=1
\end{array}
$$

Problem 2: Aperiodic Scheduling

Consider the following scheduling problem $1 \mid$ sync $\mid T_{w}$:
Using a uniprocessor machine, find a schedule for a set $\mathcal{J}=\left\{J_{1}, \ldots, J_{n}\right\}$ of n synchronous tasks with computation times C_{1}, \ldots, C_{n} that minimizes the weighted sum of the completion times

$$
T_{w}=\sum_{i=1}^{n}\left(w_{i} f_{i}\right),
$$

where $w_{i}>0$ is a weight, and f_{i} is the time at which task i finishes its execution. (Note: The schedule is not required to respect the deadlines. We are only interested in minimizing T_{w}.)
(a) Let \mathcal{J} be a task set, and let σ be a schedule for \mathcal{J} that is optimal with respect to the problem $1 \mid$ sync $\mid T_{w}$. Formally prove that there exists a nonpreemptive schedule σ^{*} for \mathcal{J} with the same T_{w} of σ.
(b) Devise a polynomial-time algorithm that, given a task set $\mathcal{J}=\left\{J_{1}, \ldots, J_{n}\right\}$, computes a schedule σ for \mathcal{J} that is optimal with respect to the scheduling problem $1 \mid$ sync \mid T_{w}.
(c) Formally prove that your algorithm computes an optimal schedule.

Problem 3: Optimality of Aperiodic Scheduling

Consider the problem of scheduling a set of synchronous tasks on a uniprocessor machine. It was shown in class that Jackson's EDD algorithm minimizes the maximum lateness

$$
L_{\max }=\max _{i}\left(f_{i}-d_{i}\right) .
$$

For each of the following criteria, determine whether the EDD algorithm minimizes it:
(a) average response time $\bar{R}=\frac{1}{n} \sum_{i=1}^{n} f_{i}$;
(b) total completion time $T_{c}=\max _{i}\left(f_{i}\right)$;
(c) weighted sum of completion times $T_{w}=\sum_{i=1}^{n} w_{i} f_{i}$;
(d) number of late tasks $N_{\text {late }}=\sum_{i=1}^{n}$ (if $d_{i}>f_{i}$ then 1 else 0$)$.

For each criterion, if EDD minimizes it, give a formal proof; otherwise give a counterexample.

Problem 4: Project Schedule

Make a schedule for the last project and present it in the discussion slot this week (10./11.07.). Indicate in this schedule when you plan to start with the subproblems and estimate a finishing time. Make sure to identify parallelizable tasks.

