
Ruzica Piskac, Ph.D.
Leander Tentrup, M.Sc.
Michael Gerke, M.Sc.
Felix Klein, B.Sc.

Summer term 2014
Project 3

Due: Friday, 25th July 2014

Embedded Systems

In this project we aim to replicate the mars pathfinder robot, sent to mars in 1996.
However, as the complete robot would be out of scope of the lecture we reduce the setting
to a slightly simplified version. The goal of this project is to illustrate the design workflow,
the interplay of different components in a larger embedded device, and handling access
to restricted resources. Furthermore, using a hardware description language to design
time critical components illustrates the main conceptual differences compared to usual
programmable microcontrollers.

Introduction. In our setting, we consider three main components of the robot: the
meteorological data gathering task (M) collects data from its environment and writes it
on the information bus, the bus manager (B) controls access to the bus and transports
data over the bus to its destination, and the communication task (C) exchanges data with
the base station. To represent M and C we use the Arduino Nano v3. The bus manager
is controlled through a Spartan6-LX45 FPGA. The Arduino (M) is equipped with an
acceleration sensor providing the “meteorological” data to the system. The Arduino (C) is
equipped with three LED bars to display the meteorological data. Furthermore, a button
is used to model a request from the base station. Additionally, all three components are
equipped with an IR-receiver and an IR-transmitter.

The behavioral description of the project can be summarized as follows: Repeatedly, M
collects the three values from the acceleration sensor and sends it to the bus via the
IR-transmitter. B then collects this data and saves it until new data arrives. Finally, if C

1



requests data (triggered by a button press at input pin 12) B forwards the last received
measurement to C. To ensure mutual exclusive access to the bus, B has to schedule M
and C using a channel access protocol in which C has priority against M. Details to the
different components and protocols are given in the next sections.

Meteorological Data. We use the acceleration sensor MMA73611 to collect accelera-
tion values on all three axes x, y and z. To access the sensor use the library at:

https://code.google.com/p/mma7361-library/

Note, that we do not use the example wiring on the board. Use the following code to
initialize the sensor:

<acc>.begin(5,8,6,7,A0,A1,A2);
<acc>.setARefVoltage(3.3);
<acc>.setSensitivity(LOW);
<acc>.calibrate();

Here, <acc> represents the variable to your sensor interface.

Displaying Data. We use three bi-color LED bargraphs2 equipped with 24 red and
green LEDs each to display the received acceleration data. Use the library at

https://github.com/adafruit/Adafruit-LED-Backpack-Library

to control the bars. Each bar is used to display one axis of the received acceleration data.
We use an amplitude to display positive and negative values where the center represents
zero. For a positive value, the amplitude should go to the right and for a negative value
the amplitude should go to the left. The amplitude is displayed by enabling the red
LEDs. If there is no amplitude, the green LEDs should be enabled. Consider also the
following illustrations of two examples.

value = 30

center

value = -20

center

Data Transmission. We use the infrared LEDs LD 271 L3 (output pin 3) to transmit
data and the infrared receiver TSOP48384 (input pin 2) to receive data. To visualize
the transmissions each component is additionally equipped with a LED. To transmit the
data on the Arduinos use the library at:

https://github.com/shirriff/Arduino-IRremote

1 https://www.sparkfun.com/datasheets/Components/General/MMA7361L.pdf
2 https://www.adafruit.com/products/1721
3 ftp://ftp.dca.fee.unicamp.br/pub/docs/ea079/datasheet/ld271.pdf
4 www.vishay.com/docs/82459/tsop48.pdf

2



Due to the current consumption and to visualize the IR-signal we use two PNP-transistors
which act as a inverter. Correspondingly, you have to change the following lines in
IRremoteInt.h and IRremote.cpp of the library:

IRremoteInt.h, line 204: #define MARK 0 → #define MARK 1

IRremoteInt.h, line 205: #define SPACE 1 → #define SPACE 0

IRremote.cpp, line 282: digitalWrite(TIMER PWM PIN, LOW); →
digitalWrite(TIMER PWM PIN, HIGH);

Due to its simplicity, we use the IR-remote protocol developed by NEC to encode our
data. This protocol can be used to transmit four byte data values (32 bit). Detailed
information about the protocol can be found at:

http://www.sbprojects.com/knowledge/ir/nec.php

This protocol is already implemented in the IR-Remote-Library. Note that we do not use
message verification.

Bus Management. Our bus is controlled by a Spartan6-LX45 FPGA which is embed-
ded on a Digilent AnvylTM Spartan-6 FPGA Development Board5. For the project you
have to complete the given project files, which are available on our webpage. Your task
is to implement

a) the decoder (decoder.vhd) which is used to parse the IR-protocol from NEC and

b) the bus manager (manager.vhd) which schedules M and C, saves data and reads/writes
data to the bus.

To ensure mutual exclusion on the bus, you should use the following protocol:

B M C B B/M
ROUND SYNC ACCESS REC ACCESS REC

ACCESS M
ACCESS C ACC X ACC Y ACC Z

t t t t 3 · t

The protocol is organized in rounds. First, B sends out a message ROUND SYNC to syn-
chronize M and C to the protocol. Then M sends out the message ACCESS REC if it has
new data. The same follows for C if the button was pressed. Afterwards, B either sends
out ACCESS M or ACCESS C depending on which component has requested the bus. Re-
member that C has priority over M. Finally, either B sends the three data values to C
or B receives new data from M. An appropriate value for t is t = 200ms, but you may
optimize this. After the end of a round a new round starts.

You have to implement the scheduling protocol on all three devices. You should make sure
that there no interference between the receiver and transmitter of the same component.
Furthermore, you have to find appropriate four byte values for the messages ROUND SYNC,
ACCESS REC, ACCESS M and ACCESS C. You can use the segment display and LEDs for
debugging purposes.

5 https://digilentinc.com/Products/Detail.cfm?NavPath=2,400,1175&Prod=ANVYL

3



In your final solution

1. you should only make changes to the marked areas,

2. your project must compile without producing any warnings/errors, and

3. the reset signal should be handled correctly.

Hardware. All required hardware can be found in E1.3 Room 301. Please do not move
the FPGA, you just need the USB cable and the power switch. Do not change the circuits
as they are pre-configured. Take care that all devices are powered off, if you leave the
room.

Problem 1: Sub-Goals

Try to archive the following sub-goals first:

1. Install all mentioned Arduino libraries, apply the necessary changes and get familiar
with the interfaces.

2. Install the Xilinx ISE Design Suite (free WebPACK license) from www.xilinx.com

(a registration is required)6. After the installation you need to install the Digilent
driver which can be found under

<path to your installation>/ISE DS/ISE/bin/<os type>/digilent/

As there might occur problems when downloading the Linux binaries, you can also
get them directly at our offices.

3. Get familiar with the Design Suite interface and the simulator.

4. Try to understand the already provided project files and their design concepts.

5. Try to send measurements directly between M and C.

6. Try to receive messages by the FPGA. You can use the decoder to test some cases
with the simulator.

It may be useful to parallelize some of these sub-goals.

Problem 2: Final Goal

Complete the project and send the files Arduino m.ino, Arduino c.ino, decoder.vhd
and manager.vhd before 25.07.2014 23:59:59 to

es14@react.uni-saarland.de

Add your group number, your names and your immatriculation numbers to the e-mail.
Be prepared to present your solution eventually after the exam.

6In case you use OS X, you have to set up a Linux or Windows VirtualBox first, as there is no direct
support for this system by Xilinx.

4


	Problem 1: Sub-Goals
	Problem 2: Final Goal

