

8

REVIEW: Dataflow modeling

Lee/Seshia Section 6.3 Marwedel Section 2.5

- Identifying, modeling and documenting how data moves around an information system.
- Dataflow modeling examines
 - processes (activities that transform data from one form to another),
 - data stores (the holding areas for data),
 - external entities (what sends data into a system or receives data from a system, and
 - data flows (routes by which data can flow).
- Dataflow modeling focuses on how things connect, (imperative programming: how things happen).
- Scheduling responsibility of the system, not programmer

Dataflow models

Buffered communication between concurrent components (actors).

An actor can fire whenever it has enough data (*tokens*) in its input buffers. It then produces some data on its output buffers.

In principle, buffers are unbounded. But for implementation on a computer, we want them bounded (and as small as possible).

REVIEW: Reference model for dynamic data flow: Kahn process networks (1974)

Describe computations to be performed and their dependence but not the order in which they must be performed

communication via infinitely large FIFOs

Properties of Kahn process networks (1)

- Each node corresponds to one program/task;
- Communication is only via channels;
- Channels include FIFOs as large as needed;
- Channels transmit information within an unpredictable but finite amount of time;
- Mapping from ≥1 input sequence to ≥1 output sequence;
- In general, execution times are unknown;
- Send operations are non-blocking, reads are blocking.
- One producer and one consumer;
 i.e. there is only one sender per channel;

Properties of Kahn process networks (2)

- There is only one sender per channel.
- A process cannot check whether data is available before attempting a read.
- A process cannot wait for data for more than one port at a time.
- Therefore, the order of reads depends only on data, not on the arrival time.
- Therefore, Kahn process networks are deterministic (!); for a given input, the result will always the same, regardless of the speed of the nodes.

A Kahn System

Prints an alternating sequence of 0's and 1's

Emits a 1 then copies input to output

Emits a 0 then copies input to output

A Kahn Process

```
process f(in int u, in int v, out int w)
int i; bool b = true;
for (;;) {
 i = b? wait(u) : wait(v);
 printf("%i\n", i);
 send(i, w);
 b = !b;
```


Process alternately reads from u and v, prints the data value, and writes it to w

Source: Gilles Kahn, The Semantics of a Simple Language for Parallel Programming (1974)

A Kahn Process

```
process f(in int u, in int v, out int w)
int i; bool b = true;
for (;;) {
 i = b? wait(u) : wait(v);
                                      wait() returns the next
 printf("%i\n", i);
                                      token in an input FIFO,
 send(i, w);
                                      blocking if it's empty
 b = !b;
                                  send() writes a data
                                  value on an output FIFO
```

Source: Gilles Kahn, The Semantics of a Simple Language for Parallel Programming (1974)

A Kahn Process

```
process g(in int u, out int v, out int w)
                                                                V
int i; bool b = true;
                                                     g
                                          U
for(;;) {
 i = wait(u);
                                                                 W
 if (b) send(i, v); else send(i, w);
 b = !b;
                                Process reads from u and
                                alternately copies it to v and w
```

Definition: Kahn networks

A Kahn process network is a directed graph (V,E), where

- V is a set of **processes**,
- $E \subseteq V \times V$ is a set of **edges**,
- associated with each edge e is a domain D_e
- D^{ω} : finite or countably infinite sequences over D

 D^{∞} is a complete partial order where $X \le Y$ iff X is an initial segment of Y

Definition: Kahn networks

■ associated with each process $v \in V$ with incoming edges e_1, \ldots, e_p and outgoing edges e_1, \ldots, e_q , is a continuous **function** $f_V: D_{e_1}^{\omega} \times \ldots \times D_{e_p}^{\omega} \xrightarrow{\omega} D_{e_1}^{\omega} \times \ldots \times D_{e_q}^{\omega}$

(A function *f*: $A \rightarrow B$ is **continuous** if $f(\lim_{A} a) = \lim_{B} f(a)$)

Semantics: Kahn networks

A process network defines for each edge $e \in E$ a **unique** sequence X_e .

 X_e is the least fixed point of the equations $(X_{e_1}, ..., X_{e_q}) = f_v(X_{e_1}, ..., X_{e_p})$ for all $v \in V$.

Result is independent of scheduling!

Scheduling Kahn Networks

Problem: run processes with finite buffer

Scheduling may be impossible

Parks' Scheduling Algorithm (1995)

- Set a capacity on each channel
- Block a write if the channel is full
- Repeat
 - Run until deadlock occurs
 - If there are no blocking writes \rightarrow terminate
 - Among the channels that block writes, select the channel with least capacity and increase capacity until producer can fire.

- Start with buffers of size 1
- Run A, B, C, D

- Start with buffers of size 1
- Run A, B, C, D

- Start with buffers of size 1
- Run A, B, C, D

- Start with buffers of size 1
- Run A, B, C, D

- Start with buffers of size 1
- Run A, B, C, D

- Start with buffers of size 1
- Run A, B, C, D

- B blocked waiting for space in B->C buffer
- Run A, then C
- System will run indefinitely

Parks' Scheduling Algorithm

- Whether a Kahn network can execute in bounded memory is undecidable
- Parks' algorithm does not violate this
- It will run in bounded memory if possible, and use unbounded memory if necessary

Disadvantages:

- Requires dynamic memory allocation
- Does not guarantee minimum memory usage
- Scheduling choices may affect memory usage
- Data-dependent decisions may affect memory usage
- Relatively costly scheduling technique
- Detecting deadlock may be difficult

Synchronous data flow

With digital signal processors, data flows at fixed rate

Synchronous data flow (SDF)

- Restriction of Kahn networks (Berkeley, Ptolemy system)
- Asynchronous message passing= tasks do not have to wait until output is accepted.
- Synchronous data flow = all tokens are consumed at the same time.

SDF model allows static scheduling of token production and consumption. In the general case, buffers may be needed at edges.

SDF: restriction of Kahn networks

An **SDF graph** is a tuple (V, E, cons, prod, d) where

- V is a set of nodes (activities)
- E is a set of edges (buffers)
- cons: $E \rightarrow N$ number of tokens consumed
- prod: $E \rightarrow N$ number of tokens produced
- d: $E \rightarrow N$ number of initial tokens

d: "delay" (sample offset between input and output)

CD-to-DAT rate converter

Converts a 44.1 kHz sampling rate to 48 kHz

Scheduling SDF models

(admissible = correct schedule, finite amount of memory required)

SDF Scheduling Algorithm Lee/Messerschmitt 1987

1. Establish relative execution rates

- Generate balance equations
- Solve for smallest positive integer vector c

2. Determine periodic schedule

- Form an arbitrarily ordered list of all nodes in the system
- Repeat:
 - For each node in the list, schedule it if it is runnable, trying each node once
 - If each node has been scheduled **c**_n times, stop.
 - If no node can be scheduled, indicate deadlock.

Source: Lee/Messerschmitt, Synchronous Data Flow (1987)

Balance equations

 Number of produced tokens must equal number of consumed tokens on every edge

- Firing vector v_S of schedule S: number of firings of each actor in S
- $v_S(A) n_p = v_S(B) n_c$ must be satisfied on each edge

3 v_S(A) - v_S(B) = 0

•
$$v_{S}(B) - v_{S}(C) = 0$$

• 2
$$v_{S}(A) - v_{S}(C) = 0$$

Balance equations

topology matrix

- M v_S = 0
 iff S is periodic
- Full rank (as in this case)
 - no non-zero solution
 - no periodic schedule

the (c, r)th entry in the matrix is the amount of data produced by node c on arc r each time it is involved

Rank of a matrix

The rank of a matrix Γ is the number of linearly independent rows or columns.

The equation

$$\Gamma q = \vec{0}$$

forms a linear combination of the columns of Γ . Such a linear combination can only yield the zero vector if the columns are linearly dependent.

If Γ has *a* columns and *b* rows, the rank cannot exceed min(a, b).

Balance equations

- Non-full rank
- Infinite number of solutions exist: any multiple of | 1 2 2 |^T satisfies the balance equations
- ABCBC and ABBCC are valid schedules

Static SDF scheduling

SDF scheduling theorem (Lee '86)

- A connected SDF graph with n actors has a periodic schedule iff its topology matrix M has rank n-1
- If M has rank n-1 then there exsts a unique smallest integer solution v_s to M v_s = 0
- Rank must be at least n-1 because we need at least n-1 edges (connectedness), each providing a linearly independent row
- Rank is at most n because there are n actors
- Admissibility is not guaranteed, depends on initial tokens on cycles

Admissibility

- No admissible schedule: BACBA, then deadlock...
- Adding one token on A->C makes BACBACBA valid
- Making a periodic schedule admissible is always possible, but changes specification...

An inconsistent system

- No way to execute without an unbounded accumulation of tokens
- Only consistent solution is "do nothing"