
- 1 -BF - ES

Embedded Systems 7

- 2 -BF - ES

Production system
A modelbased realtime faultdiagnosis

system for technical processes

Ch. Steger, R. Weiss

- 3 -BF - ES

Sprout Counter Flow Pipeline-Processor

 Based on a stream of data packages

and a stream of instructions

compute

 Data and instructions arrive asynchronously

 Execution times of instructions vary

 Data flows from left to right

 Instructions flow from right to left

Wolfgang Reisig: Petrinetze, Springer 2010

- 4 -BF - ES

Module

receive data

pass instr

no instr

instr

pass data

reorganize

receive instr

compute

no data

data

instr

fresh
data

done
data

fresh

instr

done

- 5 -BF - ES

Analysis

Place invariants:

A + H + E + D = 2

B + D = 1

Hence, if A and H are marked,

B must also be marked.

The edges between B and c can be removed.

(Analogously for C and f.)

- 6 -BF - ES

Invariants & boundedness

 A net is covered by place invariants

iff every place is contained in some invariant.

Theorem 1:

a) If R is a place invariant and p R, then p is bounded.

b) If a net is covered by place invariants then it is

bounded.

- 7 -BF - ES

Module

receive data

pass instr

no instr

instr

pass data

reorganize

receive instr

compute

no data

data

instr

fresh
data

done
data

fresh

instr

done

- 8 -BF - ES

Composition of modules

- 9 -BF - ES

REVIEW: Place/transition nets

Def.: (P, T, F, K, W, M0) is called a place/transition net (P/T net) iff

1. N=(P,T,F) is a net with places P and transitions T

2. K: P (N0 {}) \{0} denotes the capacity of places

(symbolizes infinite capacity)

3. W: F (N0 \{0}) denotes the weight of graph edges

4. M0: P N0 {} represents the initial marking of places

W

M0

(Segment of some net)
default:

K =

W = 1

multiple tokens per place

- 10 -BF - ES

REVIEW: Reachability

- 11 -BF - ES

REVIEW: Liveness

 A transition is live if in every reachable marking there

exists a firing sequence such that the transition

becomes enabled

 A net is live if all its transitions are live

- 12 -BF - ES

REVIEW: Deadlock

 A dead marking (deadlock) is a marking where no

transition can fire

 A net is deadlock-free if no dead marking is reachable

- 13 -BF - ES

Reachability,

Liveness,

Deadlock

are graph problems

on reachability graph

Reachability graph:

- 14 -BF - ES

Reachability graph is in general infinite

Example from Wolfgang Reisig: Petrinetze, Springer 2010

- 15 -BF - ES

Coverability graph

Example from Wolfgang Reisig: Petrinetze, Springer 2010

- 16 -BF - ES

Coverability graph

Example from Wolfgang Reisig: Petrinetze, Springer 2010

 indicates that arbitrarily

high values can be reached:

for every bound n there is a

reachable marking M with

M(p) > n

- 17 -BF - ES

Constructing the coverability graph

 The initial graph consists of the initial marking M0

 Extend the graph as long as there exists a node M

such that

 a transition t can fire from M leading to some marking M’

 but there is no outgoing edge from M labeled with t

Create a t-labeled edge from M to M’’, where M” is defined as

follows:

M’’(p) = if there exists a path from M0 to M through some node L

with L M‘ and L(p) < M‘(p)

M’’(p) = M’(p) otherwise

- 18 -BF - ES

Coverability graph is not unique

Example from Wolfgang Reisig: Petrinetze, Springer 2010

- 19 -BF - ES

Finiteness of the coverability graph

Theorem 2: Every P/T net has a finite coverability graph.

Lemma 1: Every infinite sequence of markings (Mi)

contains a weakly monotonically growing infinite

subsequence (M`i), i.e., for j<k, M`j M`k.

- 20 -BF - ES

Coverability theorem

A marking M covers a marking M’ iff, for all places p,

M(p) = M’(p) or M(p) = .

A computation of a P/T net is a sequence

where M0 is the initial marking and Mi+1 is the result of firing

transition ti in marking Mi

Theorem 3: For every computation

of a P/T net there exists, in

every coverability graph, a path

such that M’i covers Mi for all i.

...210

210
ttt

MMM

...210

210
ttt

MMM

...''' 210

210
ttt

MMM

- 21 -BF - ES

The converse does not hold

Example from Wolfgang Reisig: Petrinetze, Springer 2010

- 22 -BF - ES

Simultaneous unboundedness

A set Q of places is simultaneously unbounded iff, for

every natural number i, there exists a reachable marking Mi

where, for all q Q, Mi(q) i.

Theorem 4: For every node M in a coverability graph of

some P/T net, it holds that the places in M, where pM

iff M(p) = , are simultaneously unbounded.

D and E are

unbounded but not

simultaneously

unbounded

- 23 -BF - ES

Extensions: Petri nets with priorities

 t1 t2 : t2 has higher priority than t1.

 Petri nets with priorities are Turing-complete.

test

p1 p0

t2 t1

- 24 -BF - ES

Extensions: Predicate/transition nets

 Goal: compact representation of complex systems.

 Key changes:

 Tokens are becoming individuals;

 Transitions enabled if functions at incoming edges true;

 Individuals generated by firing transitions defined through functions

 Changes can be explained by folding and unfolding C/E

nets,

 semantics can be defined by C/E nets.

- 25 -BF - ES

Predicate/transition model

of the dining philosophers problem

 Let x be one of the philosophers,

 let l(x) be the left fork of x,

 let r(x) be the right fork of x.

p1
p3

p2

f1
f2

f3

Token: individuals.

Semantics can be

defined by replacing

net by equivalent

condition/event net.

Model can be

extended to arbitrary

numbers.

- 26 -BF - ES

Petri nets - summary

 Petri nets: focus on causal dependencies

 Condition/event nets

 Single token per place

 Place/transition nets

 Multiple tokens per place

 Predicate/transition nets

 Tokens become individuals

 Advanced theory for analyzing properties
(In general expensive. Reachability is EXPSPACE-hard.)

- 27 -BF - ES

Data Flow Models
Lee/Seshia

Section 6.3

Marwedel

Section 2.5

- 28 -BF - ES

Dataflow Models

Buffered communication between concurrent components (actors).

An actor can fire whenever it has enough data (tokens) in its input

buffers. It then produces some data on its output buffers.

In principle, buffers are unbounded. But for implementation on a

computer, we want them bounded (and as small as possible).

Actor A
FIFO buffer

Actor B

- 29 -BF - ES

Streams: The basis for Dataflow models

- 30 -BF - ES

Dataflow

Misleading

terminology!

“synchronous

dataflow” does not

mean “synchronous

composition”

- 31 -BF - ES

Data flow as a “natural” model of applications

http://www.agilemodeling.com/artifacts/dataFlowDiagram.htm

Registering for courses

www.ece.ubc.ca/~irenek/techpaps/vod/vod.html

Video on demand system

- 32 -BF - ES

Process networks

Many applications can be specified in the form of a set of

communicating processes.

Example: system with two sensors:

mux

temperature sensor

humidity sensor

FIFO

Alternating read
loop

read_temp; read_humidity

until false;

of the two sensors

not the right approach.

- 33 -BF - ES

Reference model for dynamic data flow:
Kahn process networks (1974)

Describe computations to be performed and their

dependence

but not the order in which they must be performed

communication via infinitely large FIFOs

- 34 -BF - ES

Properties of Kahn process networks (1)

 Each node corresponds to one program/task;

 Communication is only via channels;

 Channels include FIFOs as large as needed;

 Channels transmit information within an unpredictable but finite

amount of time;

 Mapping from 1 input seq. to 1 output sequence;

 In general, execution times are unknown;

 Send operations are non-blocking, reads are blocking.

 One producer and one consumer;

i.e. there is only one sender per channel;

- 35 -BF - ES

Properties of Kahn process networks (2)

 There is only one sender per channel.

 A process cannot check whether data is available before

attempting a read.

 A process cannot wait for data for more than one port at a time.

 Therefore, the order of reads depends only on data, not on the

arrival time.

 Therefore, Kahn process networks are deterministic (!); for a

given input, the result will always the same, regardless of the

speed of the nodes.

- 36 -BF - ES

A Kahn Process

process f(in int u, in int v, out int w)

{

int i; bool b = true;

for (;;) {

i = b ? wait(u) : wait(v);

printf("%i\n", i);

send(i, w);

b = !b;

}

}

f

u

v

w

Process alternately reads
from u and v, prints the data
value, and writes it to w

Source: Gilles Kahn, The Semantics of a Simple Language for Parallel Programming (1974)

- 37 -BF - ES

A Kahn Process

process f(in int u, in int v, out int w)

{

int i; bool b = true;

for (;;) {

i = b ? wait(u) : wait(w);

printf("%i\n", i);

send(i, w);

b = !b;

}

}

Source: Gilles Kahn, The Semantics of a Simple Language for Parallel Programming (1974)

wait() returns the next
token in an input FIFO,
blocking if it’s empty

send() writes a data
value on an output FIFO

- 38 -BF - ES

A Kahn Process

process g(in int u, out int v, out int w)

{

int i; bool b = true;

for(;;) {

i = wait(u);

if (b) send(i, v); else send(i, w);

b = !b;

}

}

gu

v

w

Process reads from u and
alternately copies it to v and w

- 39 -BF - ES

A Kahn System

 Prints an alternating sequence of 0’s and 1’s

fg

h

h

Emits a 1 then copies input to output

Emits a 0 then copies input to output

- 40 -BF - ES

Definition: Kahn networks

A Kahn process network is a directed graph (V,E), where

 V is a set of processes,

 E V V is a set of edges,

 associated with each edge e is a domain De

 D: finite or countably infinite sequences over D

D is a complete partial order where

X Y iff X is an initial segment of Y

- 41 -BF - ES

Definition: Kahn networks

 associated with each process vV with incoming edges

e1, …, ep and outgoing edges e1‘, …,eq‘

is a continuous function

fv: De1

 … Dep

 De‘1

 … De‘q

(A function f: AB is continuous if f(limA a) = limBf(a))

v

e1
e'1

ep

…

e‘q

…

