

Production system

magazine/depot

N.

A modelbased realtime faultdiagnosis system for technical processes Ch. Steger, R. Weiss

NC axis

Sprout Counter Flow Pipeline-Processor

- Based on a stream of data packages $d_1 \dots d_n$ and a stream of instructions $f_1 \dots f_m$ compute $e_i =_{def} f_m (\dots f_2(f_1(d_i)) \dots)$
- Data and instructions arrive asynchronously
- Execution times of instructions vary
- Data flows from left to right
- Instructions flow from right to left

Analysis

Place invariants:

A + H + E + D = 2 B + D = 1

Hence, if A and H are marked, B must also be marked.

The edges between B and c can be removed. (Analogously for C and f.)

Invariants & boundedness

 A net is covered by place invariants iff every place is contained in some invariant.

Theorem 1:
a) If R is a place invariant and p ∈ R, then p is bounded.
b) If a net is covered by place invariants then it is bounded.

Composition of modules

REVIEW: Place/transition nets

multiple tokens per place

Def.: (P, T, F, K, W, M₀) is called a place/transition net (P/T net) iff

- 1. N=(P,T,F) is a **net** with places P and transitions T
- 2. K: $P \rightarrow (N_0 \cup \{\omega\}) \setminus \{0\}$ denotes the **capacity** of places (ω symbolizes infinite capacity)
- 3. *W*: $F \rightarrow (\mathbb{N}_0 \setminus \{0\})$ denotes the weight of graph edges
- 4. $M_0: P \rightarrow \mathbb{N}_0 \cup \{\omega\}$ represents the **initial marking** of places

REVIEW: Reachability

Marking M Is there a sequence of transition firings such that M → M'?

Marking M'

REVIEW: Liveness

- A transition is **live** if in every reachable marking there exists a firing sequence such that the transition becomes enabled
- A net is **live** if all its transitions are live

REVIEW: Deadlock

- A dead marking (deadlock) is a marking where no transition can fire
- A net is **deadlock-free** if no dead marking is reachable

Reachability, Liveness, Deadlock are graph problems on reachability graph

Reachability graph:

Reachability graph is in general infinite

Coverability graph

Coverability graph

Constructing the coverability graph

- The initial graph consists of the initial marking M_0
- Extend the graph as long as there exists a node M such that
 - a transition *t* can fire from *M* leading to some marking *M*
 - but there is no outgoing edge from *M* labeled with *t*

Create a *t*-labeled edge from M to M', where M' is defined as follows:

 $M'(p) = \omega$ if there exists a path from M_0 to M through some node Lwith $L \le M'$ and L(p) < M'(p)

M'(p) = M'(p) otherwise

Finiteness of the coverability graph

Theorem 2: Every P/T net has a finite coverability graph.

Lemma 1: Every infinite sequence of markings (M_i) contains a weakly monotonically growing infinite subsequence (M_i), i.e., for j<k, $M_i \le M_k$.

Coverability theorem

A marking *M* covers a marking *M* iff, for all places *p*, M(p) = M'(p) or $M(p) = \omega$.

A computation of a P/T net is a sequence

$$M_0 \xrightarrow{t_0} M_1 \xrightarrow{t_1} M_2 \xrightarrow{t_2} \dots$$

where M_0 is the initial marking and M_{i+1} is the result of firing transition t_i in marking M_i

Theorem 3: For every computation

 $M_0 \xrightarrow{t_0} M_1 \xrightarrow{t_1} M_2 \xrightarrow{t_2} \dots$ of a P/T net there exists, in every coverability graph, a path $M'_0 \xrightarrow{t_0} M'_1 \xrightarrow{t_1} M'_2 \xrightarrow{t_2} \dots$ such that M'_i covers M_i for all *i*.

$$100 \xrightarrow{a} 010 \xrightarrow{c} 01\omega \xrightarrow{d} 0\omega\omega \xrightarrow{d} 0\omega\omega \cdots$$

Simultaneous unboundedness

A set Q of places is **simultaneously unbounded** iff, for every natural number *i*, there exists a reachable marking M^i where, for all $q \in Q$, $M^i(q) \ge i$.

Theorem 4: For every node M in a coverability graph of some P/T net, it holds that the places in ω_M , where $p \in \omega_M$ iff $M(p) = \omega$, are **simultaneously unbounded**.

Extensions: Petri nets with priorities

• $t_1 \langle t_2 : t_2$ has higher priority than t_1 .

Petri nets with priorities are Turing-complete.

Extensions: Predicate/transition nets

- Goal: compact representation of complex systems.
- Key changes:
 - Tokens are becoming individuals;
 - Transitions enabled if functions at incoming edges true;
 - Individuals generated by firing transitions defined through functions
- Changes can be explained by folding and unfolding C/E nets,

semantics can be defined by C/E nets.

Predicate/transition model of the dining philosophers problem

- Let x be one of the philosophers,
- let l(x) be the left fork of x,
- Iet r(x) be the right fork of x.

Token: individuals.

Semantics can be defined by replacing net by equivalent condition/event net.

Model can be extended to arbitrary numbers.

Petri nets - summary

- Petri nets: focus on causal dependencies
- Condition/event nets
 - Single token per place
- Place/transition nets
 - Multiple tokens per place
- Predicate/transition nets
 - Tokens become individuals
- Advanced theory for analyzing properties (In general expensive. Reachability is EXPSPACE-hard.)

Data Flow Models

Lee/Seshia Section 6.3

Marwedel Section 2.5

Dataflow Models

Buffered communication between concurrent components (actors).

An actor can fire whenever it has enough data (*tokens*) in its input buffers. It then produces some data on its output buffers.

In principle, buffers are unbounded. But for implementation on a computer, we want them bounded (and as small as possible).

Streams: The basis for Dataflow models

A stream is a signal $x: \mathbb{N} \to R$, for some set R. There is not necessarily any relationship between x(n), an element in a stream, and y(n), an element in another stream. Unlike discrete-time models or SR models, they are not "simultaneous."

Dataflow

Each signal has form $x: \mathbb{N} \to R$. The function F maps such signals into such signals. The function f (the "firing function") maps prefixes of these signals into prefixes of the output. Operationally, the actor *consumes* some number of tokens and *produces* some number of tokens to construct the output signal(s) from the input signal(s). If the number of tokens consumed and produced is a constant over all firings, then the actor is called a *synchronous dataflow* (SDF) actor.

Misleading terminology!

"synchronous dataflow" does not mean "synchronous composition"

Data flow as a "natural" model of applications

http://www.agilemodeling.com/artifacts/dataFlowDiagram.htm

www.ece.ubc.ca/~irenek/techpaps/vod/vod.html

BF - ES

Process networks

Many applications can be specified in the form of a set of communicating processes.

Example: system with two sensors:

Alternating read

loop

read_temp; read_humidity
until false;

of the two sensors not the right approach.

Reference model for dynamic data flow: Kahn process networks (1974)

Describe computations to be performed and their dependence but not the order in which they must be performed

communication via infinitely large FIFOs

Properties of Kahn process networks (1)

- Each node corresponds to one program/task;
- Communication is only via channels;
- Channels include FIFOs as large as needed;
- Channels transmit information within an unpredictable but finite amount of time;
- Mapping from ≥ 1 input seq. to ≥ 1 output sequence;
- In general, execution times are unknown;
- Send operations are non-blocking, reads are blocking.
- One producer and one consumer;
 i.e. there is only one sender per channel;

Properties of Kahn process networks (2)

- There is only one sender per channel.
- A process cannot check whether data is available before attempting a read.
- A process cannot wait for data for more than one port at a time.
- Therefore, the order of reads depends only on data, not on the arrival time.
- Therefore, Kahn process networks are deterministic (!); for a given input, the result will always the same, regardless of the speed of the nodes.

A Kahn Process

```
process f(in int u, in int v, out int w)
 int i; bool b = true;
 for (;;) {
  i = b? wait(u) : wait(v);
  printf("%i\n", i);
  send(i, w);
  b = !b;
```


Process alternately reads from u and v, prints the data value, and writes it to w

Source: Gilles Kahn, The Semantics of a Simple Language for Parallel Programming (1974)

A Kahn Process

```
process f(in int u, in int v, out int w)
 int i; bool b = true;
 for (;;) {
  i = b? wait(u) : wait(w);
                                       wait() returns the next
  printf("%i\n", i);
                                       token in an input FIFO,
  send(i, w);
                                       blocking if it's empty
  b = !b;
                                   send() writes a data
                                   value on an output FIFO
```

Source: Gilles Kahn, The Semantics of a Simple Language for Parallel Programming (1974)

A Kahn Process

```
process g(in int u, out int v, out int w)
                                                                 V
 int i; bool b = true;
                                                      g
                                           U
 for(;;) {
  i = wait(u);
                                                                 W
  if (b) send(i, v); else send(i, w);
  b = !b;
                                Process reads from u and
                                alternately copies it to v and w
```

A Kahn System

Prints an alternating sequence of 0's and 1's

Emits a 1 then copies input to output

Emits a 0 then copies input to output

Definition: Kahn networks

A Kahn process network is a directed graph (V,E), where

- V is a set of **processes**,
- $E \subseteq V \times V$ is a set of **edges**,
- associated with each edge e is a domain D_e
- D° : finite or countably infinite sequences over D

 D^{∞} is a complete partial order where $X \le Y$ iff X is an initial segment of Y

Definition: Kahn networks

■ associated with each process $v \in V$ with incoming edges e_1, \ldots, e_p and outgoing edges e_1, \ldots, e_q , is a continuous **function** $f_V: D_{e_1}^{\omega} \times \ldots \times D_{e_p}^{\omega} \xrightarrow{\omega} D_{e'_1}^{\omega} \times \ldots \times D_{e'_q}^{\omega}$

(A function *f*: $A \rightarrow B$ is **continuous** if $f(\lim_{A} a) = \lim_{B} f(a)$)