



5

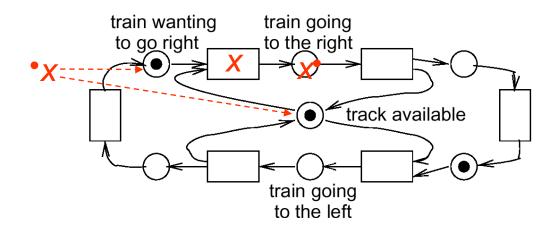
REVIEW: Petri Nets

Def.: *N*=(*C*,*E*,*F*) is called a **Petri net**, iff the following holds

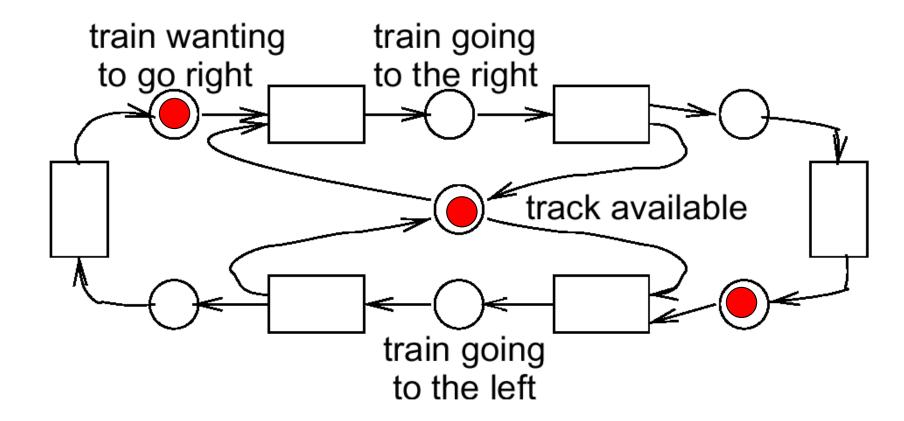
- 1. C and E are disjoint sets
- 2. $F \subseteq (C \times E) \cup (E \times C)$; is binary relation, ("flow relation")

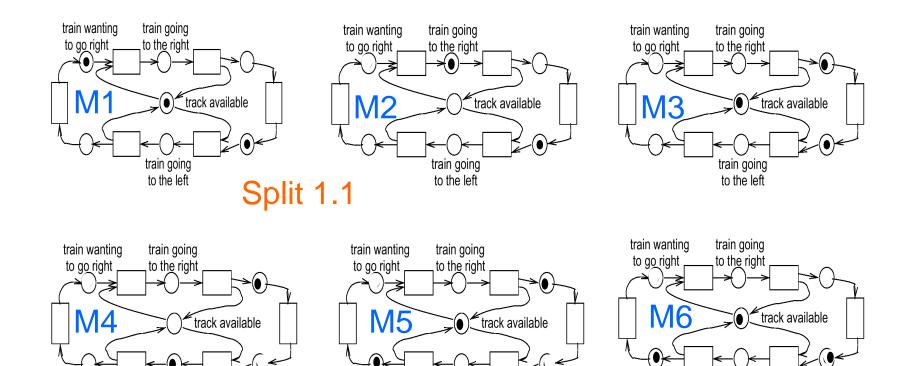
Def.: Let *N* be a net and let $x \in (C \cup E)$. * $x := \{y \mid y \in x\}$ is called the set of **preconditions**. $x^* := \{y \mid x \in y\}$ is called the set of **postconditions**.

Example:



Competing Trains Example: Conflict for resource "track"





train going

to the left

Split 5.1

train going

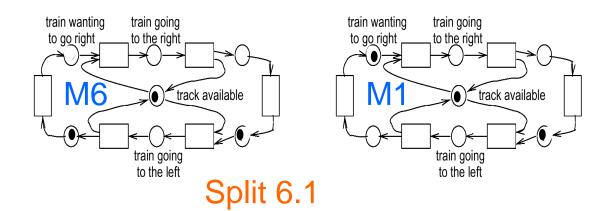
to the left

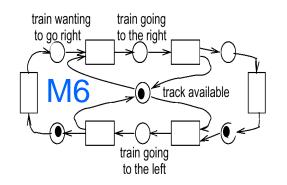
Split 4.1

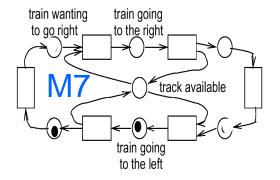
- 4 -

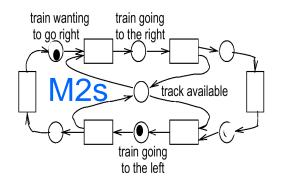
train going

to the left

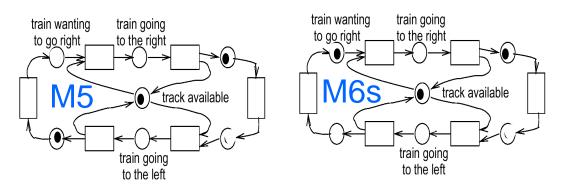




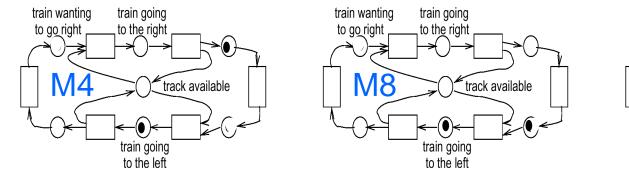


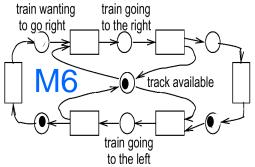


Split 6.2

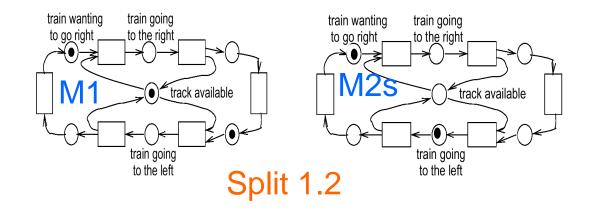


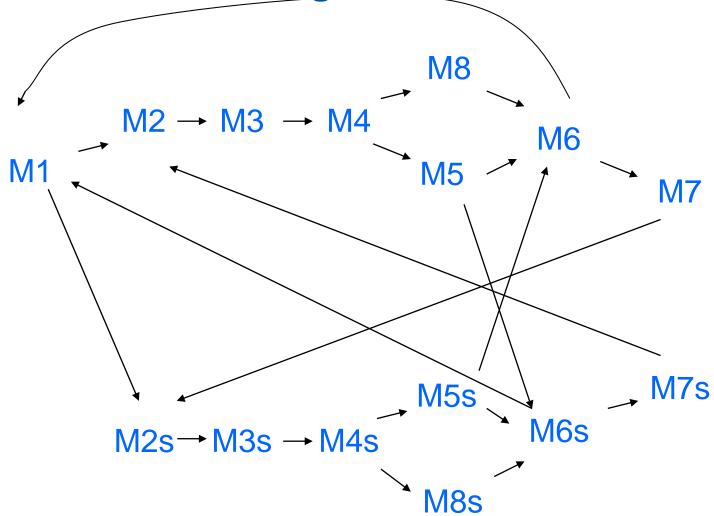
Split 5.2





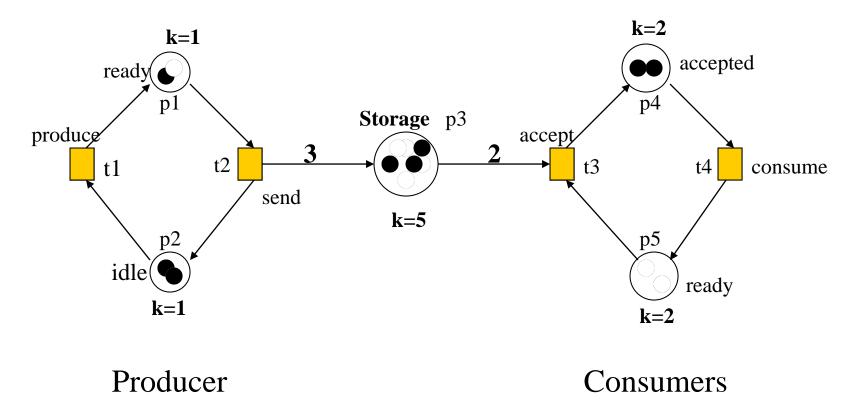
Split 4.2





Realistic scenarios need more general definitions

- More than one token per condition, capacities of places
- weights of edges
- state space of Petri nets may become infinite!



From conditions to resources

- c/e nets model the flow of information at a fundamental level (true/false)
- there are natural application areas for which the flow/transport of resources and the number of available resources is important (data flow, document-/workflow, production lines, communication networks, www, ..)
- place/transition nets are a generalization of c/e nets

From conditions to resources

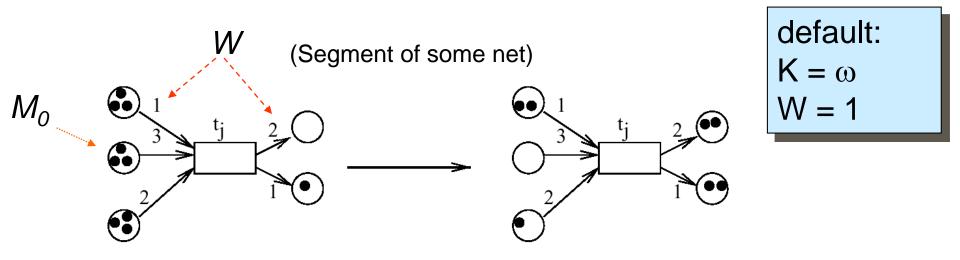
- place/transition nets are a generalization of c/e nets:
 - state elements represent places where resources (tokens) can be stored
 - transition elements represent local transitions or transport of resources
- a transition is enabled if and only if
 - sufficient resources are available on all its input places
 - sufficient capacities are available on all its output places
- a transition occurrence
 - consumes tokens from each input place and
 - produces tokens on each output place

Place/transition nets

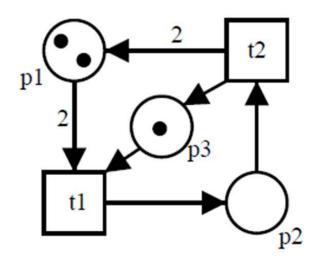
multiple tokens per place

Def.: (P, T, F, K, W, M₀) is called a place/transition net (P/T net) iff

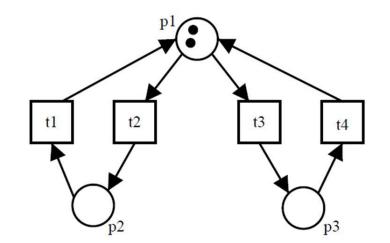
- 1. N=(P,T,F) is a **net** with places P and transitions T
- 2. K: $P \rightarrow (\mathbf{N}_0 \cup \{\omega\}) \setminus \{0\}$ denotes the **capacity** of places (ω symbolizes infinite capacity)
- 3. *W*: $F \rightarrow (\mathbb{N}_0 \setminus \{0\})$ denotes the weight of graph edges
- 4. $M_0: P \rightarrow \mathbf{N}_0 \cup \{\omega\}$ represents the **initial marking** of places



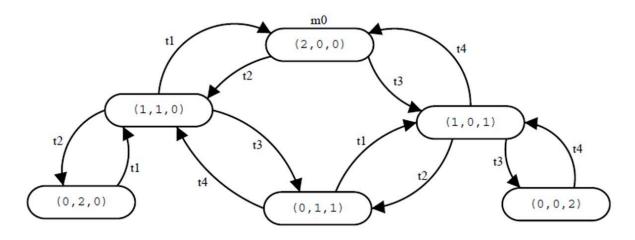
Example



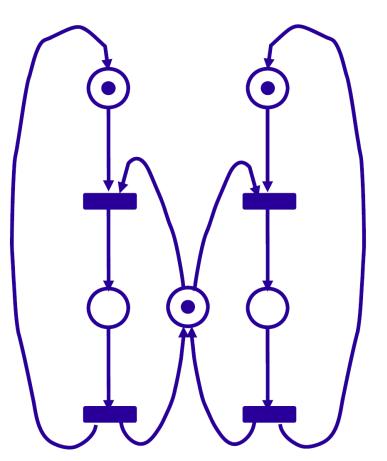
- P = (p1, p2, p3)
- T = {t1, t2}
- F = {(p1, t1), (p2, t2), (p3, t1), (t1, p2), (t2, p1), (t2, p3)}
- W = {(p1, t1) \rightarrow 2, (p2, t2) \rightarrow 1, (p3, t1) \rightarrow 1, (t1, p2) \rightarrow 1, (t2, p1) \rightarrow 2, (t2, p3) \rightarrow 1}
- m0 = (2, 0, 1)

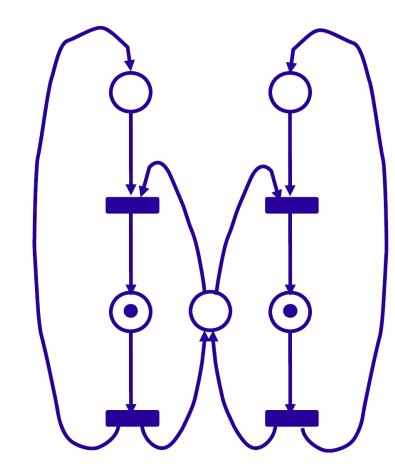


Reachability graph:



Reachability





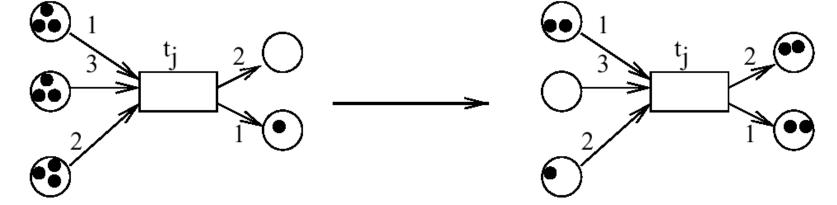
Marking M Is there a sequence of transition firings such that M → M'?

Marking M'

Computing changes of markings

 "Firing" transitions t generate new markings on each of the places p according to the following rules:

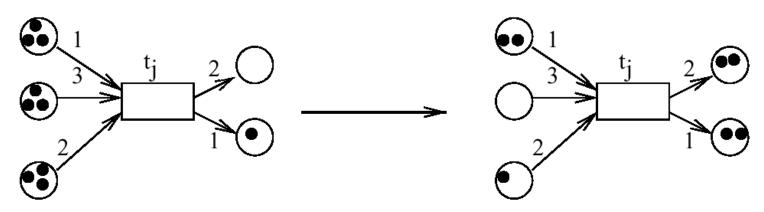
$$M'(p) = \begin{cases} M(p) - W(p,t), & \text{if } p \in {}^{\bullet}t \setminus t^{\bullet} \\ M(p) + W(t,p), & \text{if } p \in t^{\bullet} \setminus {}^{\bullet}t \\ M(p) - W(p,t) + W(t,p), & \text{if } p \in {}^{\bullet}t \cap t^{\bullet} \\ M(p) & \text{otherwise} \end{cases}$$



Activated transitions

Transition t is "activated" iff

 $(\forall p \in {}^{\bullet}t : M(p) \ge W(p,t)) \land (\forall p \in t^{\bullet} : M(p) + W(t,p) \le K(p))$



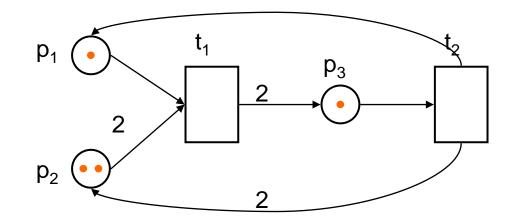
Activated transitions can "take place" or "fire", but don't have to.

The order in which activated transitions fire is not fixed (it is non-deterministic).

Boundedness

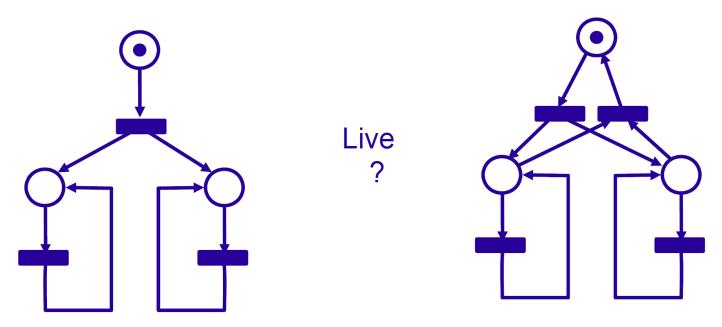
- A place is called k-bounded or k-safe if it contains in all reachable markings at most k tokens
- A net is **bounded** if each place is bounded

Application: places represent buffers and registers \rightarrow avoid buffer overflow



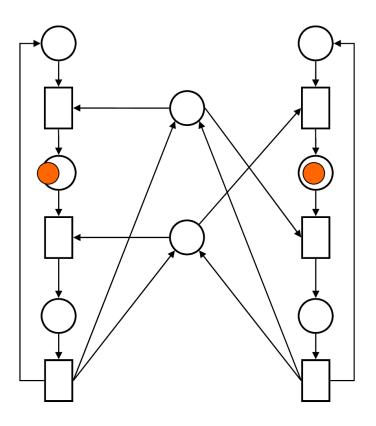
Liveness

- A transition is **live** if in every reachable marking there exists a firing sequence such that the transition becomes enabled
- A net is **live** if all its transitions are live



Deadlock

- A dead marking (deadlock) is a marking where no transition can fire
- A net is **deadlock-free** if no dead marking is reachable

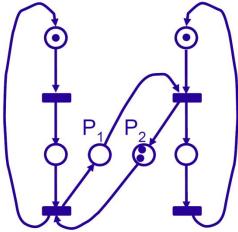


Computation of Invariants

We are interested in subsets consisting of places whose number of tokens remain invariant under transitions,

e.g. the number of trains commuting between Amsterdam and Paris (Cologne and Paris) remains constant

Important for correctness proofs, e.g. the proof of liveness



 $P_1 + P_2 = 2$

Shorthand for changes of markings

Firing transition:

$$M'(p) = \begin{cases} M(p) - W(p,t), & \text{if } p \in {}^{\bullet}t \setminus t^{\bullet} \\ M(p) + W(t,p), & \text{if } p \in t^{\bullet} \setminus {}^{\bullet}t \\ M(p) - W(p,t) + W(t,p), & \text{if } p \in {}^{\bullet}t \cap t^{\bullet} \\ M(p) & \text{otherwise} \end{cases}$$

Let

 \Rightarrow

 \Rightarrow

$$\underline{t}(p) = \begin{cases} -W(p,t) \text{ if } p \in {}^{\bullet}t \setminus t^{\bullet} \\ +W(t,p) \text{ if } p \in t^{\bullet} \setminus {}^{\bullet}t \\ -W(p,t) + W(t,p) \text{ if } p \in t^{\bullet} \cap {}^{\bullet}t \\ 0 \end{cases}$$

 $\forall p \in P: M'(p) = M(p) + \underline{t}(p)$

M' = M + t +: vector add

BF - ES

- 24 -

Matrix <u>N</u> describing all changes of markings

$$\underline{t}(p) = \begin{cases} -W(p,t) \text{ if } p \in {}^{\bullet}t \setminus t^{\bullet} \\ +W(t,p) \text{ if } p \in t^{\bullet} \setminus {}^{\bullet}t \\ -W(p,t) + W(t,p) \text{ if } p \in t^{\bullet} \cap {}^{\bullet}t \\ 0 \end{cases}$$

Def.: Matrix <u>N</u> of net N is a mapping

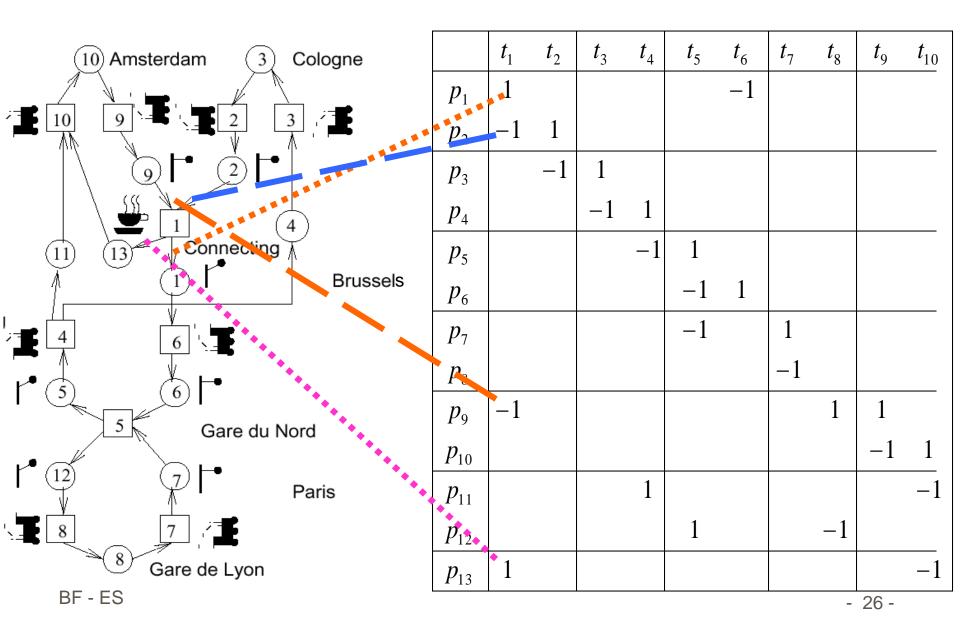
<u>N</u>: $P \times T \rightarrow Z$ (integers)

such that $\forall t \in T$: $\underline{N}(p,t) = \underline{t}(p)$

Component in column *t* and row *p* indicates the change of the marking of place *p* if transition *t* takes place.

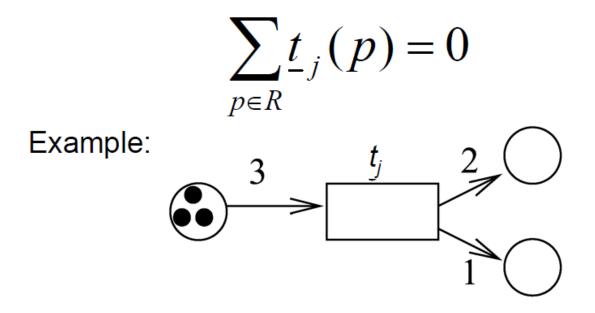
BF - ES

Example: <u>N</u>=



Place invariants

For any transition $t_j \in T$ we are looking for sets $R \subseteq P$ of places for which the accumulated marking is constant:



Characteristic Vector

$$\sum_{p \in R} \underline{t}_j(p) = 0$$

$$\underline{c}_{R}(p) = \begin{cases} 1 \text{ if } p \in R \\ 0 \text{ if } p \notin R \end{cases}$$

$$\Rightarrow \sum_{p \in R} \underline{t}_{j}(p) = \underline{t}_{j} \cdot \underline{c}_{R} = \sum_{p \in P} \underline{t}_{j}(p) \underline{c}_{R}(p) = 0$$

Scalar product

Condition for place invariants

$$\sum_{p \in R} \underline{t}_j(p) = \underline{t}_j \cdot \underline{c}_R = \sum_{p \in P} \underline{t}_j(p) \underline{c}_R(p) = 0$$

Accumulated marking constant for all transitions if $\underline{t}_1 \cdot \underline{c}_R = 0$ $\dots \dots \dots$ $\underline{t}_n \cdot \underline{c}_R = 0$

Equivalent to $\underline{N}^T \underline{c}_R = \mathbf{0}$ where \underline{N}^T is the transposed of \underline{N}

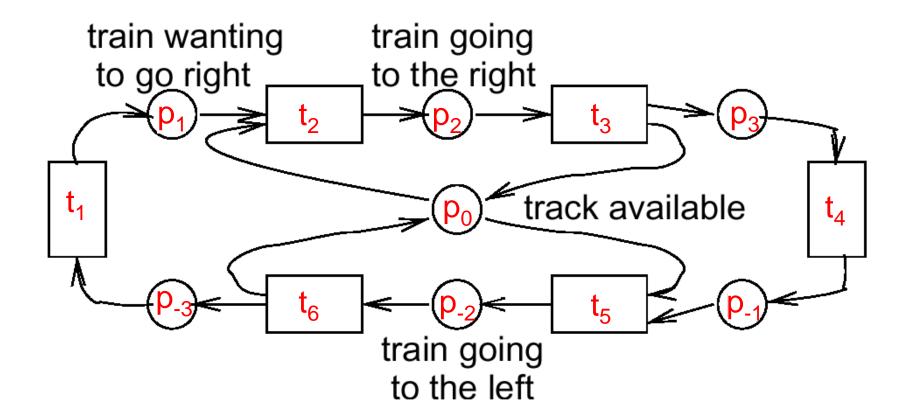
System of linear equations

$$\begin{pmatrix} \underline{t}_{1}(p_{1})...\underline{t}_{1}(p_{n}) \\ \underline{t}_{2}(p_{1})...\underline{t}_{2}(p_{n}) \\ ... \\ \underline{t}_{m}(p_{1})...\underline{t}_{m}(p_{n}) \end{pmatrix} \begin{pmatrix} \underline{c}_{R}(p_{1}) \\ \underline{c}_{R}(p_{2}) \\ ... \\ \underline{c}_{R}(p_{n}) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

System of linear equations.

Solution vectors must consist of zeros and ones.

Competing trains example



Application to Thalys example

 $\underline{N}^T \underline{c}_R = 0$, with $\underline{N}^T =$

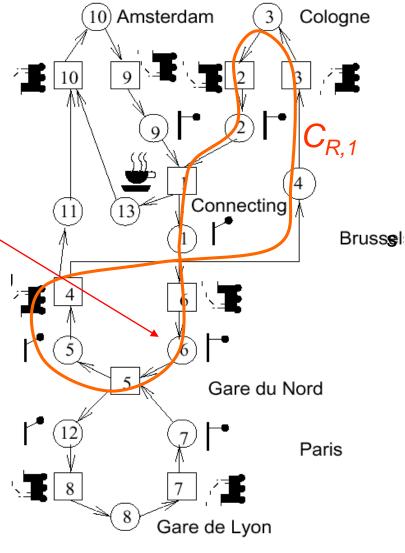
	p_1	p_2	p_3	p_4	p_5	p_5	p_7	p_8	$p_{\mathfrak{H}}$	p_{10}	p_{11}	p_{12}	p_{13}
t_1	1	-1							-1				1
t_2		1	-1										
t_3			1	-1									
t_4				1	-1						1		
$ t_5 $					1	-1	-1					1	
t_6	-1					1							
t_7							1	-1					
t_8								1				-1	
t_9									1	-1			
t_{10}										1	-1		-1

 $c_{R,1} = (1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0)$

Interpretation of the 1st invariant

$$c_{R,1} = (1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0)$$

Characteristic vector describes places for Cologne train. We proved that: the number of trains along the path remains constant.



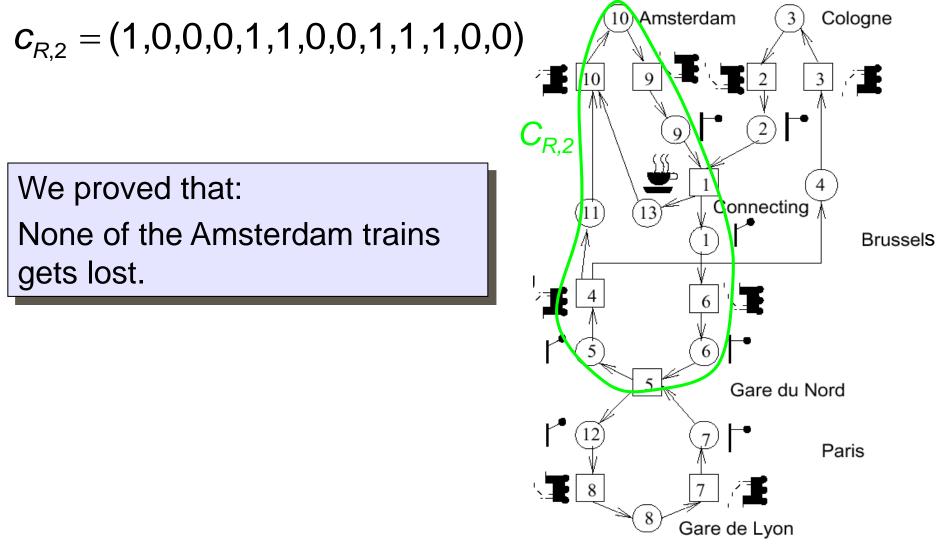
Application to Thalys example

 $\underline{N}^T \underline{c}_R = \mathbf{0}$, with $\underline{N}^T =$

	p_1	p_2	p_3	p_4	p_5	p_5	p_7	p_8	$p_{\mathfrak{H}}$	p_{10}	p_{11}	p_{12}	p_{13}
t_1	1	-1							-1				1
t_2		1	-1										
$ t_3 $			1	-1									
t_4				1	-1						1		
$ t_5 $					1	-1	-1					1	
t_6	-1					1							
t_7							1	-1					
t_8								1				-1	
t_9									1	-1			
t_{10}										1	-1		-1

 $C_{R,2} = (1,0,0,0,1,1,0,0,1,1,1,0,0)$

Interpretation of the 2nd invariant



Application to Thalys example

<u>N</u> ^T <u>c</u> _R = 0, with <u>N</u> ^T =	t_1	p_1 1	p_2 -1	p_3	p_4	p_5	p_5	p_7	p_8	.р ₃ -1	p_{10}	p_{11}	p_{12}	p_{13} 1
	t_2		1	-1										
	t_3			1	-1									
	$ t_4 $				1	-1						1		
	t_5					1	-1	-1					1	
	t_6	-1					1							
	t_7							1	-1					
	t_8								1				-1	
	t_9									1	-1			
	$ t_{10} $										1	-1		-1

 $c_{R,2} = (0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 0)$

Solution vectors for Thalys example

$$c_{R,1} = (1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0)$$

$$c_{R,2} = (0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 0)$$

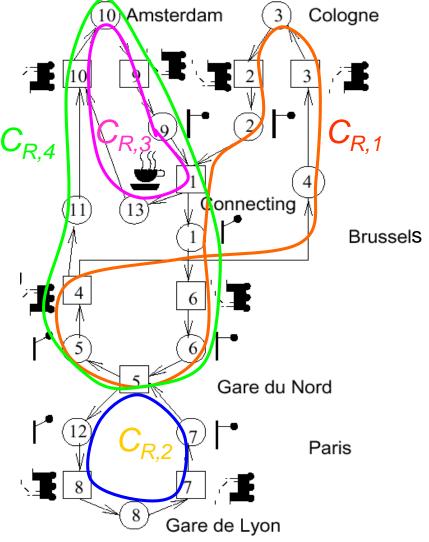
$$C_{R,3} = (0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 1)$$

$$C_{R,4}$$

$$c_{R,4} = (1\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0)$$

We proved that:

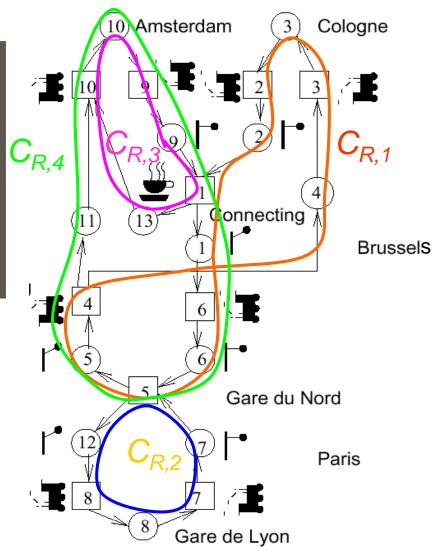
- the number of trains serving Amsterdam, Cologne and Paris remains constant.
- the number of train drivers remains constant.



Solution vectors for Thalys example

It follows:

- each place invariant must have at least one label at the beginning, otherwise "dead"
- at least three labels are necessary in the example



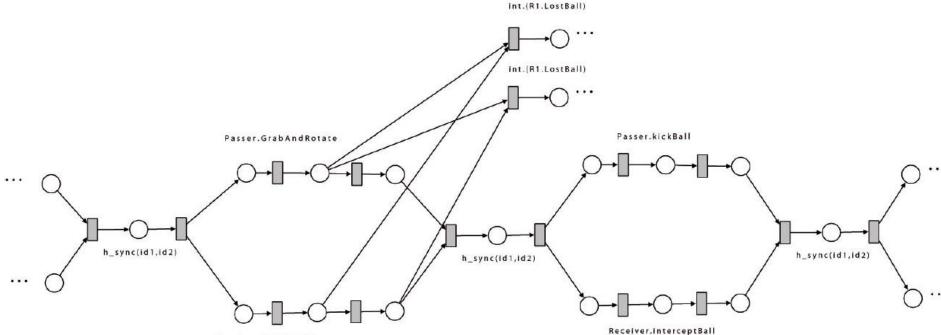
Invariants & boundedness

 A net is covered by place invariants iff every place is contained in some invariant.

Theorem 1:
a) If R is a place invariant and p ∈ R, then p is bounded.
b) If a net is covered by place invariants then it is bounded.

Petri net plan coordination for robocup teams G. Kontes and M.G. Lagoudakis

Passing Maneuver



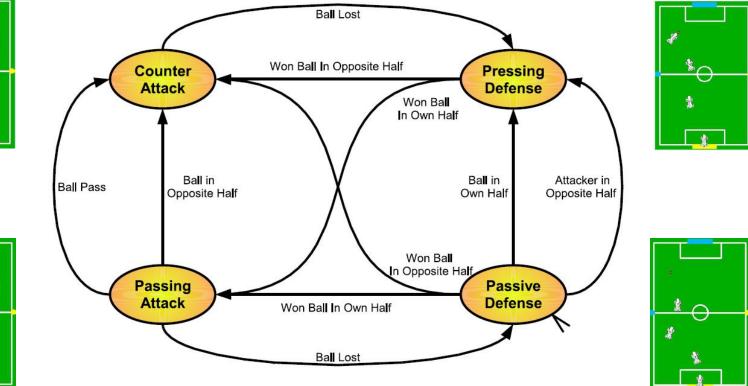
Receiver.GoToPosition

Teamwork Design Based on Petri Net Plan

P. F. Palamara, V. A. Ziparo, L. Iocchi, D. Nardi, and P. Lima

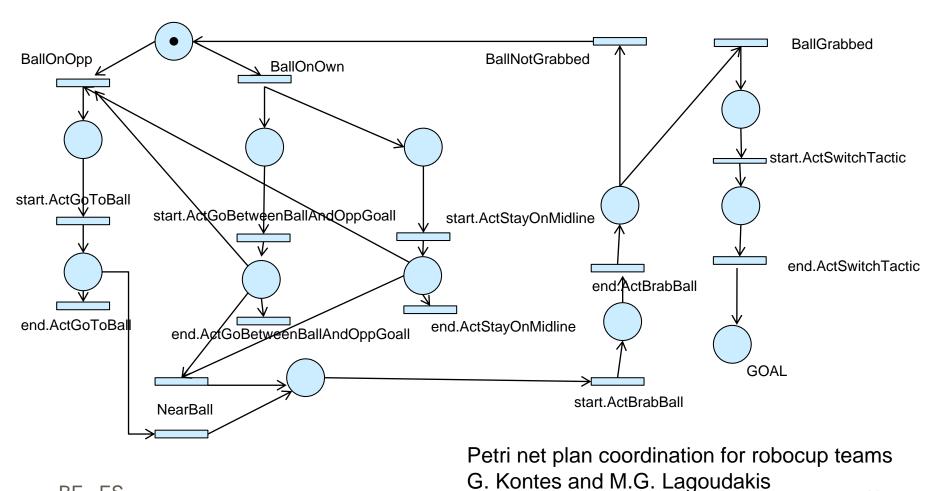
- 41 -

Team strategy



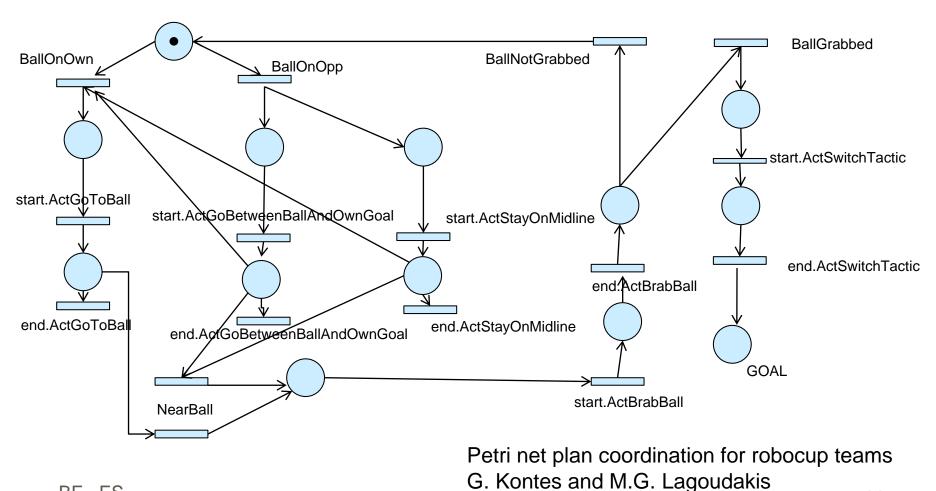
Petri net plan coordination for robocup teams G. Kontes and M.G. Lagoudakis

Attacker role in the pressing defense tactic



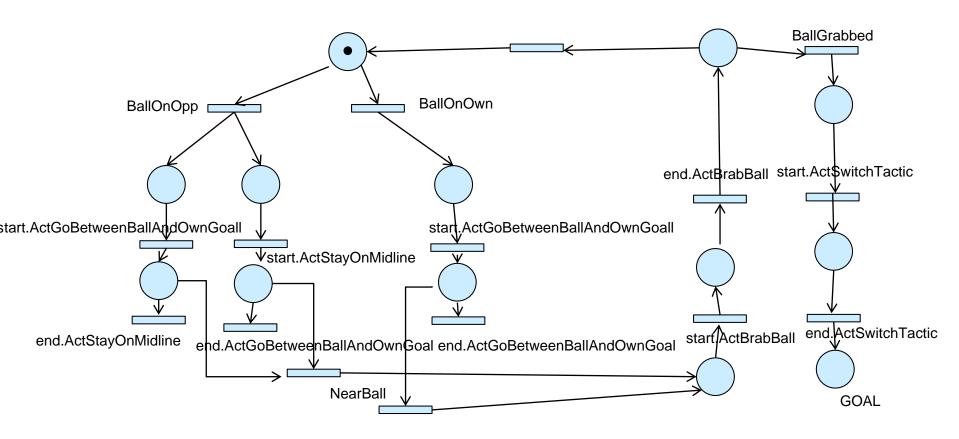
- 43 -

Midfielder role in the pressing defense tactic



- 44 -

Defender role in the pressing defense tactic



Petri net plan coordination for robocup teams G. Kontes and M.G. Lagoudakis

- 45 -