

5

Mixed Signal Models

The signals inside the blue area are continuous-time signals, and the ones outside are discrete-time signals.

REVIEW: Hybrid Automaton for Bouncing Ball

y – vertical distance from ground (position) a – coefficient of restitution, 0 < a < 1

Hybrid Automata

- Q: set of modes
- S: set of state variables, partitioned into
 - C={c₁, c₂, ..., c_n}: continuous signals (with range R)
 - D={d₁, d₂, ..., d_m}: discrete signals (with range {absent} \cup X)
- $U=\{u_1, u_2, ..., u_k\}$: set of input signals,
- Init $\subseteq Q \times \Re^n \times (\{absent\} \cup X)^m : initial condition$
- F: flows, defining differential equations for each continuous state variable in each mode
- J: Q × Guards → Q × Resets: jumps, where Guards is a constraint over C and U and Resets is a set of assignments of the form x_i := expr(X,U) for the state variables

Note: our definitions follow Lee/Seshia, there are several other definitions of hybrid automata

Hybrid Time Set

A hybrid time set is a finite or infinite sequence of intervals $\tau = \{I_i\}_{i=0..N}$ such that

- $I_i = [\tau_i, \tau_i^{\,i}]$ for all i < N;
- If N < ∞ then either I_N = [τ_N, τ_N [']] or I_N = [τ_N, τ_N [']); and
- $\tau_i \leq \tau_i$ = τ_{i+1} for all i

Hybrid Trajectory

- A hybrid trajectory (τ, q, x) consists of a hybrid time set τ and two sequences of functions
 - $q = \{q_i(\cdot): I_i \rightarrow Q\}_{i=0..N}$
 - $x = \{c_i(\cdot): I_i \rightarrow \mathfrak{R}\}_{i=0..N} \cup \{d_i(\cdot): I_i \rightarrow X \cup \{absent\}\}_{i=0..N}$

Execution of a Hybrid Automaton

 (q_0, \mathbf{x}_0) τ_0 $\rightsquigarrow (q_0, \mathbf{x}'_0)$ τ_0' = $au_1 (q_1, \mathbf{x}_1)$ $\rightsquigarrow (q_1, \mathbf{x}'_1)$ τ_1' (q_N, \mathbf{x}_N) au_N $\rightsquigarrow (q_N, \mathbf{x}'_N)$ au_N' BF - ES

time

An **execution** of a hybrid automaton is a hybrid trajectory (τ, q, x) that statisfies the following conditions

- Initial condition: $(q_0, x_0) \in Init$
- Discrete evolution: the pair ((q_i(τ[']_i),x_i(τ[']_i)), (q_{i+1}(τ_{i+1}),x_i(τ_{i+1})) satisfies J
- Continuous evolution: for all i,
 - 1. $q_i(\cdot)$ is constant over I_i
 - 2. $c_i(\cdot)$ is the solution to the differential equations in $F(q(\tau_i))$
 - 3. $d_i(\cdot)$ are absent during (τ_i, τ_i)
 - 4. All jumps in J are disabled during (τ_i, τ_i')

Execution of a Hybrid Automaton

 (q_0, \mathbf{x}_0) au_0 $\tau = \tau_0, \tau_1, \tau_2, \ldots, \tau_N[, \ldots]$ $\tau'_0 \longrightarrow (q_0, \mathbf{x}'_0)$ = ↓ $\begin{aligned} \tau_1 & (q_1, \mathbf{x}_1) \\ \tau'_1 & \rightsquigarrow (q_1, \mathbf{x}'_1) \end{aligned}$ Continuous extent of τ : $|\tau| = \sum_{i=0}^{\infty} \tau_{i+1} - \tau_i$ Discrete extent of τ : $\begin{array}{ccc} & \downarrow \\ \tau_N & (q_N, \mathbf{x}_N) \\ \tau'_N & \rightsquigarrow (q_N, \mathbf{x}'_N) \end{array} & \left\langle \tau \right\rangle = \begin{cases} N & \text{if } \tau \text{ is a finite sequence of length } N \\ \infty & \text{if } \tau \text{ is an infinite sequence} \end{cases}$

time

REVIEW: Hybrid Automaton for Bouncing Ball

$ au_0$	(q_0, \mathbf{x}_0)
$ au_0'$	$\rightsquigarrow (q_0, \mathbf{x}'_0)$
=	\downarrow
$ au_1$	$(q_1, \mathbf{x_1})$
$ au_1'$	$\rightsquigarrow (q_1, \mathbf{x}'_1)$
	\downarrow
	÷
	\downarrow
$ au_N$	(q_N, \mathbf{x}_N)
$ au_N'$	$\rightsquigarrow (q_N, \mathbf{x}'_N)$
	\downarrow
	:

time

An execution of a hybrid automaton with time set τ is zeno iff $\langle \tau \rangle = \infty$ but $|\tau| < \infty$.

Superdense Time

A signal can have a sequence of values at each (real) time.

At (real) time t, x has a sequence of values

$$x(t,0), x(t,1), \cdots$$

Initial and final value signals

Let $x : \mathbb{R} \times \mathbb{Z} \to \mathbb{R}^3$ be a CT signal. Define the *initial* value signal to be a function $x_i : \mathbb{R} \to \mathbb{R}$ where

 $x_i(t) = x(t,0)$

Define the *final value signal* to be a function $x_f : \mathbb{R} \to \mathbb{R}$ where

 $x_f(t) = x(t,m)$

where $m \in \mathbb{N}$ is the least value such that

$$\forall n > m, \quad x(t,n) = x(t,m).$$

If there is no such m at any t, then the signal is said to be a *stuttering Zeno signal*.

BF - ES

Simulation of continuous-time systems

Lee/Seshia Section 6.4

- The (numeric) simulator cannot directly deal with the time continuum, but can approximate it
- We consider equations of the form

$$\dot{\mathbf{x}}(t) = f(\mathbf{x}(t), t)$$

 An equivalent model is an integral equation

$$\mathbf{x}(t) = \mathbf{x}(0) + \int_0^t \dot{\mathbf{x}}(\tau) d\tau$$
$$= \mathbf{x}(0) + \int_0^t f(\mathbf{x}(\tau), \tau) d\tau$$

(b)

BF - ES

Forward Euler Solver $\dot{x}(t)$ (0, 0)h 2h 3hh (a) $\dot{x}(t)$ (1)(1)(2)(3)(3)

A forward Euler solver estimates the value of **x** at time points $0, h, 2h, 3h, \cdots$, where *h* is called the **step size**. The integration is approximated as follows,

$$\begin{aligned} \mathbf{x}(h) &= \mathbf{x}(0) + hf(\mathbf{x}(0), 0) \\ \mathbf{x}(2h) &= \mathbf{x}(h) + hf(\mathbf{x}(h), h) \\ \mathbf{x}(3h) &= \mathbf{x}(2h) + hf(\mathbf{x}(2h), 2h) \\ \dots \\ \mathbf{x}((k+1)h) &= \mathbf{x}(kh) + hf(\mathbf{x}(kh), kh). \end{aligned}$$

Marwedel, Section 2.6

PETRI NETS

Petri nets

Introduced in 1962 by Carl Adam Petri

Application areas:

- modelling, analysis, verification of distributed systems
- automation engineering
- business processes
- modeling of resources
- modeling of synchronization

Focus on modeling causal dependencies; no global synchronization assumed (message passing only).

Concurrency and parallelism

- Concurrency is central to embedded systems. A computer program is said to be **concurrent** if different parts of the program conceptually execute simultaneously.
- A program is said to be **parallel** if different parts of the program physically execute simultaneously on distinct hardware (multi-core, multi-processor or distributed systems)

Example 1: The four seasons

Key Elements

Conditions

Either met or not met. Conditions represent "local states". Set of conditions describes the potential state space.

Events

May take place if certain conditions are met. Event represents a state transition.

Flow relation

Relates conditions and events, describes how an event changes the local and global state.

Tokens

Assignments of tokens to conditions specifies a global state.

Example 2: Synchronization at single track rail segment

 mutual exclusion: there is at most one train using the track rail

Playing the "token game": dynamic behavior

Playing the "token game": dynamic behavior

Playing the "token game": dynamic behavior

Conflict for resource "track": two trains competing

Condition/event Petri nets

single token per place

Def.: *N*=(*C*,*E*,*F*) is called a **Petri net**, iff the following holds

- 1. C and E are disjoint sets
- 2. $F \subseteq (C \times E) \cup (E \times C)$; is binary relation, ("flow relation")

Def.: Let *N* be a net and let $x \in (C \cup E)$. * $x := \{y \mid y \in x\}$ is called the set of **preconditions**. $x^* := \{y \mid x \in y\}$ is called the set of **postconditions**.

Example:

Boolean marking and computing changes of markings

- A Boolean marking is a mapping M: $C \rightarrow \{0,1\}$.
- "Firing" events x generate new markings on each of the conditions c according to the following rules:

a transition at x can be fired, iff *x, *i.e.* all preconditions of x are marked and x^* is not marked, after firing *x *is* unmarked and x^* is marked

■ M → M', iff M' results from M by firing exactly one transition

Expressiveness: basic examples

 concurrency of transitions

- alternative or conflict
- synchronization

Competing Trains Example: Conflict for resource "track"

Basic structural properties: Loops and pure nets

Def.: Let $(c,e) \in C \times E$. (c,e) is called a **loop** iff $cFe \wedge eFc$.

Def.: Net *N*=(*C*,*E*,*F*) is called **pure**, if *F* does not contain any loops.

Structural properties: Simple nets

Def.: A net is called **simple**, iff $[x,y \in (C \cup E) \land (*x = *y) \land (x^* = y^*)] \rightarrow x = y$

Example (not a simple net):

Properties of C/E

Def.:

- Marking M' is reachable from marking M, iff there exists sequence of firing steps transforming M into M' (Not.: M [*> M')
 - A C/E net is **cyclic**, iff any two different markings are reachable from each other.
 - A C/E net fulfills **liveness**, iff for each marking M and for each event e there exists a reachable marking M' that activates e for firing

Place/transition nets

- More than one token per condition, capacities of places
- weights of edges

