Embedded Systems

21

REVIEW: Scheduling idea

- 1. Divide the time line into time slices such that each period of each process is divided into an integral number of time slices. Slice length $T = GCD(T_1, ..., T_n)$.
- 2. Within each time slice, allocate processor time in proportion to the utilization $U_i = \frac{C_i}{T_i}$ originating from the various tasks. Processing time per slice $r_i = TU_i = T\frac{C_i}{T_i}$. Hence, each task runs $\frac{T_i}{T}r_i = \frac{T_i}{T}T\frac{C_i}{T_i} = C_i$ time units within its period.
- 3. Allocate r_i according to the following algorithm
 - (a) Look for the first processor $proc_j$ that has free capacity in its time slices.
 - (b) Allocate that portion of r_i to $proc_j$ that $proc_j$ can accommodate.
 - (c) If all of r_i has been allocated then proceed with the next task (goto step a).
 - (d) Otherwise allocate the remainder of r_i to $proc_{j+1}$.
 - $proc_{j+1}$ has enough spare capacity as it has not previously been used and $r_i \leq T$ due to $U_i \leq 1$. Furthermore, due to $r_i \leq T$, we don't generate temporal overlap between the two partial runs of task i.

Example (2 processors)

$$M = \frac{2}{4} + \frac{8}{8} + \frac{3}{6} = 2$$

T = $3 cd(4,8,6) = 2$

In each shier,

$$T_n$$
 has $2 \cdot \frac{2}{4} = 1$ and
 T_2 has $2 \cdot \frac{2}{5} = 2$ unib
 T_2 has $2 \cdot \frac{2}{5} = 1$ unit
 T_3 has $2 \cdot \frac{3}{5} = 1$ unit

BF - ES

Scheduling idea

This scheme works if

• the load isn't too high:

$$U = \sum_{i \in \mathcal{M}} \frac{C_i}{T_i} \le n$$

and

• the time slices allocated have integral length:

$$r_i = TU_i = Trac{C_i}{T_i} \in N$$
 for each $i \in M$

Rescheduling fractional parts

- Let $X_i = T^*C_i/T_i \lfloor T^*C_i/T_i \rfloor$
- In each period, allocate in Xi * Ti/T slices: [T*C_i/T_i]+1 units and in all other slices: [T*C_i/T_i] units
- This can be done without allowing any task to miss its deadline: use EDF!

Example (2 processors)

	τ_1	τ2	τ_3
T _i	4	6	4
C _i	2	4	3

$$\mathcal{U} = \frac{2}{4} + \frac{4}{5} + \frac{3}{4} = \frac{23}{12} < 2$$

$$T = 3 cd(4, (4)) = 2$$

Theorem: A **necessary** and **sufficient** condition for scheduling periodic tasks on n processors is $U \le n$, if the task migration time is one unit.

Lemma: If $U \le n$, then within each time slice the tasks can meet the migration time requirement without missing deadlines, if the task migration time is one unit.

- Sort tasks according to non-increasing computation times
- If computation block = T \rightarrow allocate a processor exclusively
- If computation block < T:
 - Allocate completely on one processor if possible;
 no migration
 - Allocate a part of computation at the end of proc_i , rest at the beginning of $\text{proc}_{i+1} \rightarrow \text{gap of at least 1}$

Lemma: If $U \le n$, then **between time slices** the tasks can meet the migration time requirement without missing deadlines, if the task migration time is one unit.

- For each slice, sort tasks according to nonincreasing computation blocks
- If computation block = T \rightarrow find processor that executes the task at the end of the previous slice \rightarrow no migration
- If no such processor exists → assign it to some left-on processor at the end (migration time already accounted for in previous slice)

If computation block < T

 \rightarrow find processor j that executed the task at the end of the previous slice

Assign as much as possible to current processor;

If insufficient, use j from the beginning (no migration at the beginning, >= 1 with gap within the slice)

 If no such processor exists → assign task later (migration time already accounted for in the previous slice)

Example (4 processors)

	Computation block	
τ ₁	10	- T_10
τ ₂	9	- 1=10
τ ₃	9	_
τ ₄	9	_
τ ₅	3	_

Theorem: Let $T=gcd(T_1, ..., T_m)$ and let R be the task migration time. A **sufficient condition** for scheduling the m periodic tasks is that $U \le n \cdot (T-R+1)/T$.

Example (4 processors)

