Embedded Systems

A e s U e A e e e

BF - ES

21

REVIEW: Scheduling idea

1)

Divide the time line into time slices such that each period of each process is
divided into an integral number of time slices.

Slice length T = GCD(Ty, ..., T.).

. Within each time slice, allocate processor time in proportion to the
utilization U; = <~ originating from the various tasks.

Processing time per slice r; = TU; =T ({_‘; :

Hence, each task runs tiry = T?T(T:— — C; time units within its period.

. Allocate r; according to the following algorithm

(a) Look for the first processor proc; that has free capacity in its time slices.
(b) Allocate that portion of r; to proc; that proc; can accommodate.
(c) If all of r; has been allocated then proceed with the next task (goto step
a).
(d) Otherwise allocate the remainder of r; to proc; ;.
proc;1 has enough spare capacity as it has not previously been usead

and r; < T dueto U; < 1. Furthermore, due to r; < T, we don't
generate temporal overlap between the two partial runs of task i.

Example (2 processors)

2 § }
N=©¢ » - +2 = 2
& 4 c

T 14|86
cl2]s]3

/] ot

) b

A ot

BF - ES

Scheduling idea

This scheme works If
* the load isn’t too high:

Cs
U=2 3 sn
cM

1

and
* the time slices allocated have integral length:

ri:Tui:T%eNforeachieM

Rescheduling fractional parts

* |n each period,
allocate in Xi * Ti/T slices: LT*C/T.J+1 units
and in all other slices: LT*Cy/T,] units

= This can be done without allowing any task to miss its
deadline: use EDF!

BF - ES

Example (2 processors) T | Tp | T3

T, | 4|64
(A_ 2; ,_|,.‘f- + z_t E'.} C_'L Ci e : :
T (¥
| = a,c<l<qlctl*) =2
n chA g«({c*.
l - |22)= hiwe vF
T, = ‘Tq ~ LS{J - /1 Hw st
T e LZ'E’.J LCC ~ N ki~ it
. b L2-%) = ;J ”
Nk oo \
1, Ty b e e 3 b

BF - ES Tg

Ta WT T |
(MES NS EIY j

BF - ES

Extension: Task migration time

Theorem: A necessary and sufficient condition for
scheduling periodic tasks on n processors is
U < n, if the task migration time is one unit.

BF - ES

Extension: Task migration time

Lemma: If U <n, then within each time slice the tasks

can meet the migration time requirement without missing
deadlines, if the task migration time is one unit.

« Sort tasks according to non-increasing computation
times

 |f computation block = T — allocate a processor
exclusively
 |If computation block < T:

* Allocate completely on one processor if possible;
no migration

 Allocate a part of computation at the end of proc,,
rest at the beginning of proc,,, — gap of at least 1

BF - ES 9.

Extension: Task migration time

Lemma: If U <n, then between time slices the tasks can
meet the migration time requirement without missing
deadlines, if the task migration time is one unit.

* For each slice, sort tasks according to non-
increasing computation blocks

 |f computation block = T — find processor that
executes the task at the end of the previous slice —
no migration

 If no such processor exists — assign it to some
left-on processor at the end (migration time already
accounted for in previous slice)

BF - ES - 10 -

 If computation block < T

— find processor j that executed the task at the
end of the previous slice

Assign as much as possible to current
processor;

If insufficient, use j from the beginning (no
migration at the beginning, >= 1 with gap within the
slice)
 If no such processor exists — assign task later

(migration time already accounted for in the
previous slice)

BF - ES

- 11 -

Example (4 processors)
Computation block
T4 10 _
. 9 T=10
Ty 9
T4 9
Ts 3
<l]
1 \ (A [l v N
2 | 1E B [B éﬁﬂ
3 i [
4 |1 =TT T
10 20

BF - ES

Extension: Task migration time

Theorem: Let T=gcd(T4, ..., T,) and let R be the task
migration time. A sufficient condition for scheduling
the m periodic tasks is that U < n - (T-R+1)/T.

[f W
f) o benl) et /-
A J Al

BF - ES

Example (4 processors)

Computation block

10 T=12,

T4
2 : R=3
T4 9
Ty 9
Ts 3
1 [* 71 E A
2 T '@, S "E
3 o 2 94 f T
10 12 22 24
1 — 1
2 T TR | i =
3 |U = sl : N
4 N [ovt ﬁt 3 —1 =
BF -E : :
S 10 12 22 24

- 14 -

