
- 1 -BF - ES

Embedded Systems                                  21



- 2 -BF - ES

REVIEW: Scheduling idea

1. Divide the time line into time slices such that each 
period of each process is divided into an integral 
number of time slices.

2. Within each time slice, allocate processor time in 
proportion to the utilization Ui = Ci / Ti originating from 
the various tasks. 



- 3 -BF - ES

Example (2 processors) 1 2 3

Ti 4 8 6
Ci 2 8 3



- 4 -BF - ES

Scheduling idea



- 5 -BF - ES

Rescheduling fractional parts

 Let Xi = T*Ci/Ti - T*Ci/Ti

 In each period, 
allocate in Xi * Ti/T slices: T*Ci/Ti+1 units
and in all other slices: T*Ci/Ti units

 This can be done without allowing any task to miss its 
deadline: use EDF! 



- 6 -BF - ES

Example (2 processors) 1 2 3

Ti 4 6 4
Ci 2 4 3



- 7 -BF - ES



- 8 -BF - ES

Extension: Task migration time

Theorem: A necessary and sufficient condition for 
scheduling periodic tasks on n processors is 
U  n, if the task migration time is one unit.



- 9 -BF - ES

Extension: Task migration time

Lemma: If U  n, then within each time slice the tasks 
can meet the migration time requirement without missing 
deadlines, if the task migration time is one unit.

• Sort tasks according to non-increasing computation 
times

• If computation block = T → allocate a processor 
exclusively

• If computation block < T:
• Allocate completely on one  processor if possible; 

no migration
• Allocate a part of computation at the end of proci, 

rest at the beginning of proci+1 → gap of at least 1



- 10 -BF - ES

Extension: Task migration time

Lemma: If U  n, then between time slices the tasks can 
meet the migration time requirement without missing 
deadlines, if the task migration time is one unit.

• For each slice, sort tasks according to non-
increasing computation blocks

• If computation block = T → find processor that 
executes the task at the end of the previous slice →  
no migration

• If no such processor exists → assign it to some  
left-on processor at the end (migration time already 
accounted for in previous slice)



- 11 -BF - ES

• If computation block < T 
→ find processor j that executed the task at the 

end of the previous slice
Assign as much as possible to current 

processor; 
If insufficient, use j from the beginning (no 

migration at the beginning, >= 1 with gap within the 
slice)
• If no such processor exists → assign task later 

(migration time already accounted for in the 
previous slice)



- 12 -BF - ES

Example (4 processors)
Computation block

1 10
2 9
3 9
4 9
5 3

T=10

1

2

3

4

10 20



- 13 -BF - ES

Extension: Task migration time

Theorem: Let T=gcd(T1, …, Tm) and let R be the task 
migration time. A sufficient condition for scheduling 
the m periodic tasks is that U  n  (T-R+1)/T.



- 14 -BF - ES

Example (4 processors)
i Computation block

1 10

2 9

3 9

4 9

5 3

T=12, 
R=3

1

2

3

4

10 12 22 24

1

2

3

4

10 12 22 24


