Embedded Systems

21

REVIEW: Scheduling idea

1. Divide the time line into time slices such that each period of each process is divided into an integral number of time slices. Slice length $T=\operatorname{GCD}\left(T_{1}, \ldots, T_{n}\right)$.
2. Within each time slice, allocate processor time in proportion to the utilization $U_{i}=\frac{C_{i}}{T_{i}}$ originating from the various tasks.
Processing time per slice $r_{i}=T U_{i}=T \frac{C_{i}}{T_{i}}$.
Hence, each task runs $\frac{T_{i}}{T} r_{i}=\frac{T_{i}}{T} T \frac{C_{i}}{T_{i}}=C_{i}$ time units within its period.
3. Allocate r_{i} according to the following algorithm
(a) Look for the first processor proc $_{j}$ that has free capacity in its time slices.
(b) Allocate that portion of r_{i} to proc $_{j}$ that proc $_{j}$ can accommodate.
(c) If all of r_{i} has been allocated then proceed with the next task (goto step a).
(d) Otherwise allocate the remainder of r_{i} to proc $_{j+1}$. proc $_{j+1}$ has enough spare capacity as it has not previously been used and $r_{i} \leq T$ due to $U_{i} \leq 1$. Furthermore, due to $r_{i} \leq T$, we don't generate temporal overlap between the two partial runs of task i.

Example (2 processors)

$$
\begin{aligned}
& U=\frac{2}{4}+\frac{8}{8}+\frac{3}{6}=2 \\
& T=\operatorname{gcd}(4,8,6)=2
\end{aligned}
$$

In read slice,
T_{1} has $2 \cdot \frac{2}{4}=1$ unit
T_{2} him $2 \cdot \frac{8}{8}=2$ unit
T_{3} has $2 \cdot \frac{3}{6}=1$ unit

Scheduling idea

This scheme works if

- the load isn't too high:

$$
\mathrm{U}=\sum_{\mathrm{i} \in \mathrm{M}} \frac{\mathrm{C}_{\mathrm{i}}}{\mathrm{~T}_{\mathrm{i}}} \leq \mathrm{n}
$$

and

- the time slices allocated have integral length:

$$
r_{i}=T U_{i}=T \frac{C_{i}}{T_{i}} \in N \text { for each } i \in M
$$

Rescheduling fractional parts

- Let $X_{i}=T^{*} C_{i} / T_{i}-\left\lfloor T^{*} C_{i} / T_{i}\right\rfloor$
- In each period, allocate in Xi^{*} Ti/T slices: $\left\lfloor\mathrm{T}^{*} \mathrm{C}_{\mathrm{i}} / \mathrm{T}_{\mathrm{j}}\right\rfloor+1$ units and in all other slices: $\left\lfloor T^{*} \mathrm{C}_{\mathrm{i}} / \mathrm{T}_{\mathrm{i}}\right\rfloor$ units
- This can be done without allowing any task to miss its deadline: use EDF!

	τ_{1}	τ_{2}	τ_{3}
$\mathrm{~T}_{\mathrm{i}}$	4	6	4
C_{i}	2	4	3

$$
\begin{aligned}
& U=\frac{2}{4}+\frac{4}{6}+\frac{3}{4}=\frac{23}{12} c 2 \\
& T=\operatorname{gcd}(4,6,4)=2
\end{aligned}
$$

In ead slia
T_{1} ha $\left\lfloor 2 \cdot \frac{2}{4}\right\rfloor=1$ time unit
T_{L} ha $\left\lfloor 2 \cdot \frac{4}{6}\right\rfloor=\left\lfloor\frac{8}{6}\right\rfloor=1$ time wid
T_{3} han $\left\lfloor 2 \cdot \frac{3}{4}\right\rfloor=\left\lfloor\frac{6}{4}\right\rfloor=1$ the wit
T_{2}, T_{3} har fractical porth
$\Rightarrow T_{2}$ heerts 1 estra wit evern 3 olices T_{3} werch n estre wit eving 2 slim

Extension: Task migration time

Theorem: A necessary and sufficient condition for scheduling periodic tasks on n processors is $\mathrm{U} \leq \mathrm{n}$, if the task migration time is one unit.

Extension: Task migration time

Lemma: If $\mathrm{U} \leq \mathrm{n}$, then within each time slice the tasks can meet the migration time requirement without missing deadlines, if the task migration time is one unit.

- Sort tasks according to non-increasing computation times
- If computation block $=\mathrm{T} \rightarrow$ allocate a processor exclusively
- If computation block < T:
- Allocate completely on one processor if possible; no migration
- Allocate a part of computation at the end of proci, rest at the beginning of proc $_{i+1} \rightarrow$ gap of at least 1

Extension: Task migration time

Lemma: If $\mathrm{U} \leq \mathrm{n}$, then between time slices the tasks can meet the migration time requirement without missing deadlines, if the task migration time is one unit.

- For each slice, sort tasks according to nonincreasing computation blocks
- If computation block $=\mathrm{T} \rightarrow$ find processor that executes the task at the end of the previous slice \rightarrow no migration
- If no such processor exists \rightarrow assign it to some left-on processor at the end (migration time already accounted for in previous slice)
- If computation block < T
\rightarrow find processor j that executed the task at the end of the previous slice

Assign as much as possible to current processor;

If insufficient, use j from the beginning (no migration at the beginning, >= 1 with gap within the slice)

- If no such processor exists \rightarrow assign task later (migration time already accounted for in the previous slice)

Example (4 processors)

	Computation block
τ_{1}	10
τ_{2}	9
τ_{3}	9
τ_{4}	9
τ_{5}	3

Extension: Task migration time

Theorem: Let $\mathrm{T}=\operatorname{gcd}\left(\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{m}}\right)$ and let R be the task migration time. A sufficient condition for scheduling the m periodic tasks is that $\mathrm{U} \leq \mathrm{n} \cdot(\mathrm{T}-\mathrm{R}+1) / \mathrm{T}$.

- Schaduch an before, bout only use $T-R+1$ units of shine
It nigratia time is for shoat \Rightarrow shift tanks) to the rift end of schedule

Example (4 processors)

i	Computation block	
τ_{1}	10	$\mathrm{~T}=12$,
τ_{2}	9	$\mathrm{R}=3$
τ_{3}	9	
τ_{4}	9	
τ_{5}	3	

[^0]

[^0]: BF - ES

