Embedded Systems

20

REVIEW: LLF (Least Laxity First)

REVIEW: Schedulability

Within a set M of aperiodic tasks, we identify three classes with respect to the next k time units starting at time t:

1. Tasks that have to be fully run within the next k time units:

 $FR(t,k) = \{i \in M \mid D_i(t) \le k\}$

2. Tasks that have to be partially run within the next k time units:

 $PR(t,k) = \{i \in M \mid L_i(t) \le k \land D_i(t) > k\}$

3. Tasks that need not be run within the next k time units:

 $NN(t,k) = \{i \in M \mid L_i(t) > k\}$

Surplus computing power

Theorem: If all tasks are released at time 0, then SCP(0,k)≥0 for all k>0 is a necessary and sufficient condition for schedulability.

Add 2)
Add 2)
Claim
$$\forall k?, 0 \exists k! s.t.$$

 $scr(t+1,k) = \underbrace{cr}_{needed forbull cons} - \underbrace{\sum_{k} C_{i}(t) - \underbrace{\sum_{k} (k-L_{i}(t))}_{needed for partial cons}}$
Claim $\forall k?, 0 \exists k! s.t.$
 $scr(t+1,k) ?, scr(t,k')$
Care 1. Add tokun deft of L=k har animating
 $b_{ij} v.c. t cal marine
 $b_{ij} v.c. t cal marine
 $f_{ij} v.c. t cal marine
Pride k'=k : Ascr=
 $scr(t+1,k) - scr(tik) k$
 $Scr(t+1,k) - scr(tik) k$
 $Tokm in FR: continute 0 to Ascr
 $- Tokm in PR: continute 0 to FR, withing L+c=k$$$$$

$$SCP(t,k) = \underbrace{kn}_{avail. \ computing \ power} - \underbrace{\sum_{i \in FR(t,k)} C_i(t)}_{needed \ for \ full \ runs} - \underbrace{\sum_{i \in PR(t,k)} (k - L_i(t))}_{needed \ for \ partial \ runs}$$

$$(ahilphia h DS(R : - C_i(t+1) + (k-Li(t))) = -(k-Li(t+1)) + (k-Li(t)) = 0$$

$$= Li(t)$$

$$Tolle het word from NN to line L=k:$$

$$(ahilphia to DS(R : -(k-Li(t+1))) = 0$$

$$Cate 2: Some of the toke left of L=k$$

$$Late 2: Some of the toke left of L=k$$

$$Late 2: Some of the toke left of L=k$$

$$Pidk k':= k+1 n$$

$$Fidk k':= k+1 n$$

$$SCP(t,k) = \underbrace{kn}_{\text{avail. computing power}} - \underbrace{\sum_{i \in FR(t,k)} C_i(t)}_{\text{needed for full runs}} - \underbrace{\sum_{i \in PR(t,k)} (k - L_i(t))}_{\text{needed for partial runs}}$$

By LLF, n token with han mored danword
left of
$$L = k \neq 1$$
.
Condu a token that mored danword
in PR: contribution to $ASCP =$
 $-(k - Li(L+1)) + (k \neq 1 - Li(L+1))$
 $= 1$
in FR: contribution to $ASCP =$
 $-(i(L+1)) + (i(L+1)) = 1$

$$SCP(t,k) = \underbrace{kn}_{avail. \ computing \ power} - \underbrace{\sum_{i \in FR(t,k)} C_i(t)}_{needed \ for \ full \ runs} - \underbrace{\sum_{i \in PR(t,k)} (k - L_i(t))}_{needed \ for \ partial \ runs}$$

Periodic tasks

Theorem: A necessary and sufficient condition for the schedulability of periodic tasks is that $U \le n$.

Scheduling idea

- 1. Divide the time line into time slices such that each period of each process is divided into an integral number of time slices. Slice length $T = GCD(T_1, ..., T_n)$.
- 2. Within each time slice, allocate processor time in proportion to the utilization $U_i = \frac{C_i}{T_i}$ originating from the various tasks. Processing time per slice $r_i = TU_i = T\frac{C_i}{T_i}$. Hence, each task runs $\frac{T_i}{T}r_i = \frac{T_i}{T}T\frac{C_i}{T_i} = C_i$ time units within its period.
- 3. Allocate r_i according to the following algorithm
 - (a) Look for the first processor $proc_j$ that has free capacity in its time slices.
 - (b) Allocate that portion of r_i to $proc_j$ that $proc_j$ can accommodate.
 - (c) If all of r_i has been allocated then proceed with the next task (goto step a).
 - (d) Otherwise allocate the remainder of r_i to $proc_{j+1}$. $proc_{j+1}$ has enough spare capacity as it has not previously been used and $r_i \leq T$ due to $U_i \leq 1$. Furthermore, due to $r_i \leq T$, we don't

generate temporal overlap between the two partial runs of task i.

Example (2 processors)

$$M = \frac{2}{4} + \frac{8}{8} + \frac{3}{6} = 2$$

T = $3 cd(4,8,6) = 2$

In each shier,

$$T_n$$
 has $2 \cdot \frac{2}{4} = 1$ and
 T_2 has $2 \cdot \frac{2}{5} = 2$ unib
 T_2 has $2 \cdot \frac{2}{5} = 1$ unit
 T_3 has $2 \cdot \frac{3}{5} = 1$ unit

BF - ES

Scheduling idea

This scheme works if

• the load isn't too high:

$$U = \sum_{i \in \mathcal{M}} \frac{C_i}{T_i} \le n$$

and

• the time slices allocated have integral length:

$$r_i = TU_i = Trac{C_i}{T_i} \in N$$
 for each $i \in M$

Rescheduling fractional parts

- Let $X_i = T^*C_i/T_i \lfloor T^*C_i/T_i \rfloor$
- In each period, allocate in Xi * Ti/T slices: [T*C_i/T_i]+1 units and in all other slices: [T*C_i/T_i] units
- This can be done without allowing any task to miss its deadline: use EDF!

Example (2 processors)

	τ_1	τ_2	τ_3
T _i	4	6	4
C _i	2	4	3

$$U = \frac{2}{4} + \frac{4}{5} + \frac{3}{4} = \frac{23}{12} - 22$$

$$T = 3 - 23 - 22$$

$$T = 3 - 23 - 22$$

