Embedded Systems

17

BF - ES

REVIEW: Rate monotonic scheduling (RM)

- Rate monotonic scheduling (RM) (Liu, Layland '73):
 - Assign fixed priorities to tasks τ_i:
 - priority $(\tau_i) = 1/T_i$
 - I.e., priority reflects release rate
 - Always execute ready task with highest priority
 - Preemptive: currently executing task is preempted by newly arrived task with shorter period.

REVIEW: Optimality of Rate Monotonic Scheduling

- Theorem (Liu, Layland, 1973): RM is optimal among all fixed-priority scheduling algorithms.
- Def.: The response time R_{i, j} of an instance j of task i is the time (measured from the arrival time) at which the instance is finished: R_{i, j} = f_{i, j} - a_{i, j}.
- The critical instant of a task is the time at which the arrival of the task will produce the largest response time.

REVIEW: Schedulability check

- A set of tasks can be scheduled by RM if $U < U_{bnd}(RM) = \ln 2 \approx 0.69$
- But what can we say about schedulability when processor utilization factor is larger than $n(2^{1/n} 1)$?
- We can compute a more precise result, if we make use of the knowledge of periods T_i and computation times C_i.

- Compute an upper bound R_i on the response time:
 - Suppose that τ₁, ..., τ_n are ordered with increasing periods (i.e. decreasing priorities).
 - Consider an arbitrary periodic task τ_i.
 - At a critical instant t, when an instance of τ_i arrives together with all higher priority tasks, we have:
 - $R_i = C_i + \sum_{k=1}^{i-1} (\# \text{ activations of } \tau_k \text{ during } [t, t + R_i]) \cdot C_k$ = $C_i + \sum_{k=1}^{i-1} \lceil R_i / T_k \rceil \cdot C_k$

- Compute the following sequence:
 - $R_i^{(0)} = C_i$.
 - $\mathsf{R}_{i}^{(j+1)} = \mathsf{C}_{i} + \sum_{k=1}^{i-1} \left\lceil \mathsf{R}_{i}^{(j)} / \mathsf{T}_{k} \right\rceil \cdot \mathsf{C}_{k}.$
- It is easy to see that this sequence is monotonically increasing, i.e., $f(x) = C_i + \sum_{k=1}^{i-1} \lfloor x / T_k \rfloor \cdot C_k$ is monotonically increasing.
- ⇒ If a least fixed point of f(x) exists, then the sequence converges to this fixed point.

Algorithm:

 \forall i: $R_i^{(0)} = C_i$

repeat

 $\forall i: R_i^{(j+1)} = C_i + \sum_{k=1}^{i-1} \left[\begin{array}{c} R_i^{(j)} / T_k \end{array} \right] \cdot C_k \\ \texttt{until} (\exists i \text{ with } R_i^{(j+1)} > D_i) \texttt{ or } (\forall i R_i^{(j+1)} = R_i^{(j)}); \\ \texttt{if} (\forall i R_i^{(j+1)} = R_i^{(j)}) \texttt{ then} \\ \texttt{report} ("RM \text{ schedulable"}); \\ \end{array}$

Example

	τ_1	τ2	τ_3	τ ₄
T _i	4	5	6	11
C _i	1	1	2	1
D _i	3	4	5	10

Example						
		τ ₁	τ2	τ_3	τ_4	
	T _i	4	5	6	11	
	C _i	1	1	2	1	
	D _i	3	4	5	10	
R	0 = 1 $1 = 1$ $1 = 1$ $2 = 1$. 2	1		= 2 = 4 = 4	$R_{4}^{2} = 1$ $R_{4}^{2} = 5$ $R_{4}^{2} = 6$ 3
=) RM-Sd BF-ES						$R_{4}^{3} = 7$ $R_{4}^{4} = 9$ $R_{4}^{5} = 10$ $R_{4}^{6} = 10$

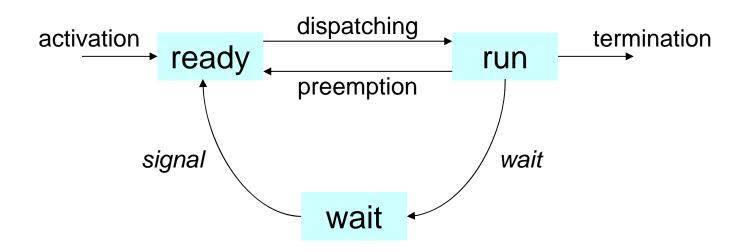
Summary

- Problem of scheduling independent and preemptable periodic tasks
- Rate monotonic scheduling:
 - Optimal solution among all fixed-priority schedulers
 - Schedulability of n tasks guaranteed, if processor utilization $U \leq n(2^{1/n} - 1).$
- Earliest deadline first:
 - Optimal solution among all dynamic-priority schedulers
 - Schedulability guaranteed if processor utilization $U \leq 1$.

Rate Monotonic Scheduling in Presence of Task Dependencies

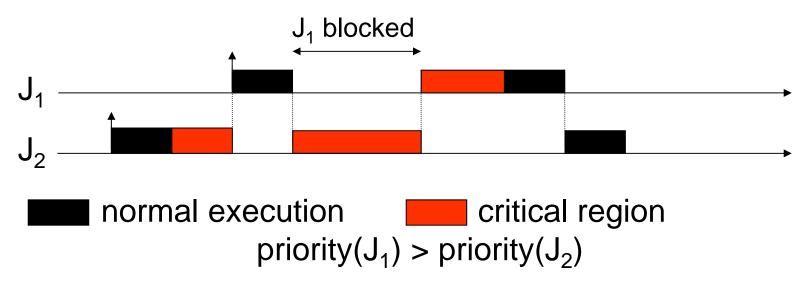
Wait state caused by resource constraints

- Each mutually exclusive resource R_i is protected by a semaphore S_i.
- Each critical section operating on R_i must begin with a *wait*(S_i) primitive and end with a *signal*(S_i) primitive.
- wait primitive on locked semaphore
 → wait state until another task executes signal primitive



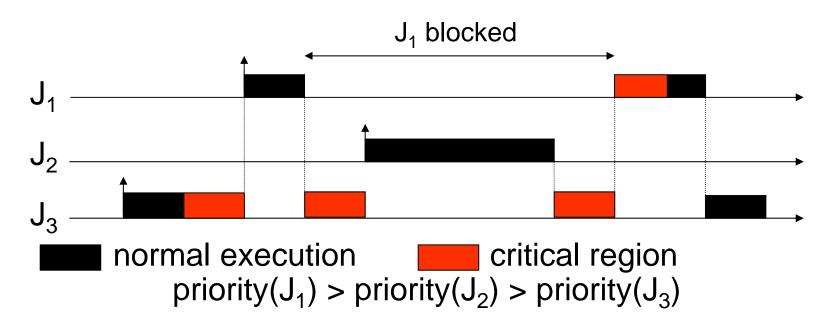
The priority inversion problem

 Priority inversion can occur due to resource conflicts (exclusive use of shared resources) in fixed priority schedulers like RM:



Here: Blocking time equal to length of critical section.

The priority inversion problem

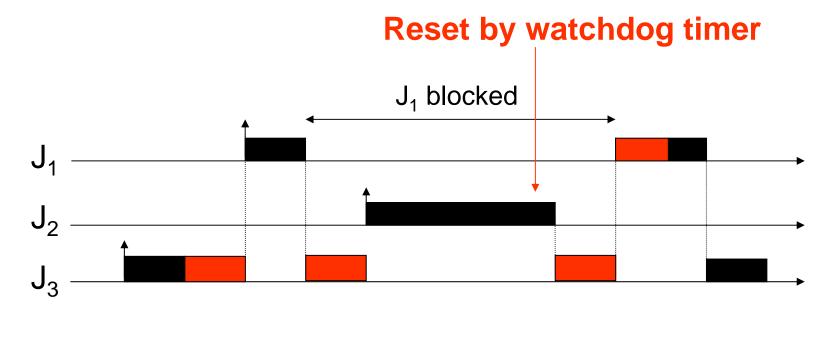


- Blocking time equal to length of critical section + computation time of J₂.
- Unbounded time of priority inversion, if J₃ is interrupted by tasks with priority between J₁ and J₃ during its critical region.

Priority inversion in real life: The MARS Pathfinder problem (1)

"But a few days into the mission, not long after Pathfinder started gathering meteorological data, the spacecraft began experiencing total system resets, each resulting in losses of data. The press reported these failures in terms such as "software glitches" and "the computer was trying to do too many things at once"." ...

Priority inversion in real life: The MARS Pathfinder problem



normal execution critical region

 $priority(J_1) > priority(J_2) > priority(J_3)$

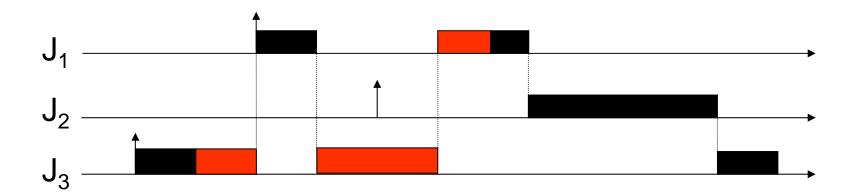
Coping with priority inversion: The priority inheritance protocol

Idea of priority inheritance protocol:

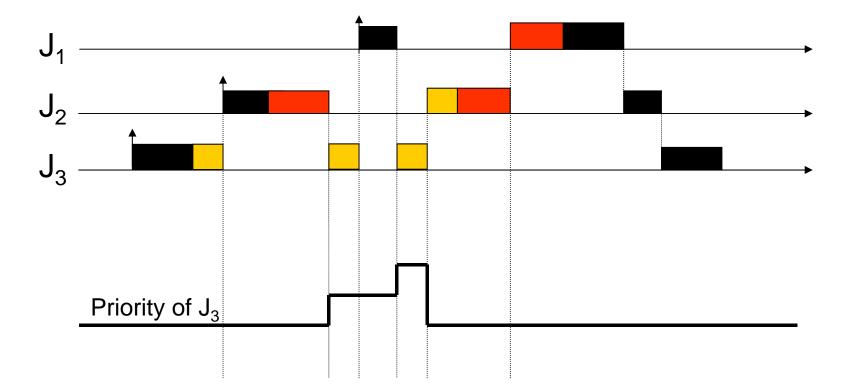
- If a task J_h blocks, since another task J_l with lower priority owns the requested resource, then J_l inherits the priority of J_h.
- When J_I releases the resource, the priority inheritance from J_h is undone.
- Rule: Tasks always inherit the highest priority of tasks blocked by it.

Direct vs. push-through blocking

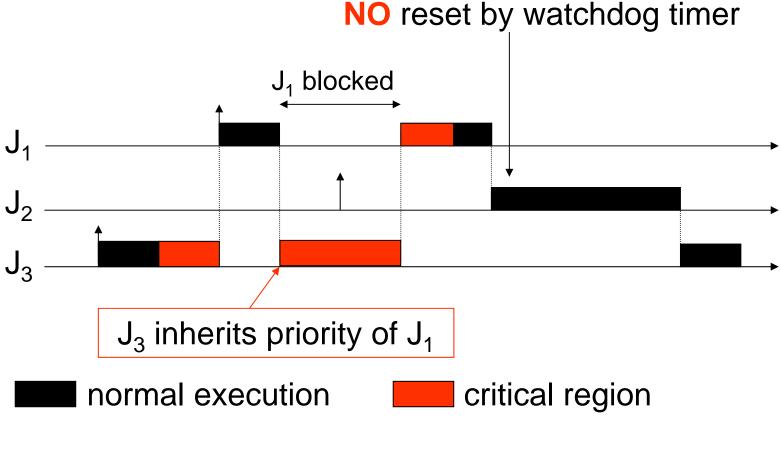
- Direct blocking: High-priority job tries to acquire resource already held by lower-priority job
- Push-through blocking: Medium-priority job is blocked by lowerpriority job that has inherited a higher priority.



Transitive priority inheritance



Priority inheritance for the Pathfinder example



 $priority(J_1) > priority(J_2) > priority(J_3)$

Priority inversion on Mars

- Priority inheritance also solved the Mars Pathfinder problem:
 - the VxWorks operating system used in the pathfinder implements a flag for the calls to mutual exclusion primitives.
 - This flag allows priority inheritance to be set to "on".
 - When the software was shipped, it was set to "off".

The problem on Mars was corrected by using the debugging facilities of VxWorks to change the flag to "on", while the Pathfinder was already on the Mars [Jones, 1997].

Let B_i be the maximum blocking time due to lower-priority jobs that a job J_i may experience.

 \forall i: $R_i^{(0)} = C_i$

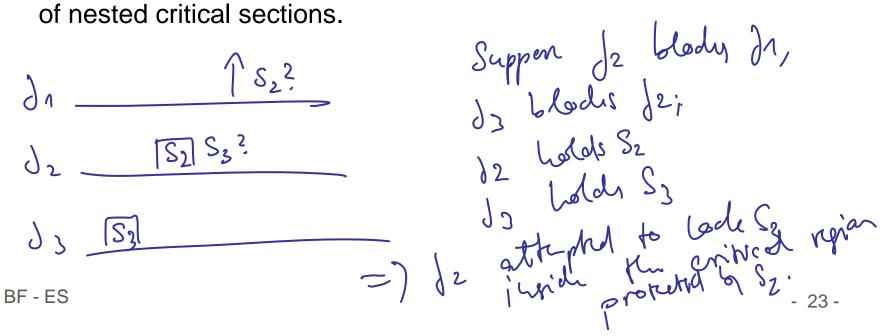
repeat

 $\forall i: R_i^{(j+1)} = C_i + B_i + \sum_{k=1}^{i-1} \left[R_i^{(j)} / T_k \right] \cdot C_k$ until ($\exists i \text{ with } R_i^{(j+1)} > D_i$) or ($\forall i R_i^{(j+1)} = R_i^{(j)}$); if ($\forall i R_i^{(j+1)} = R_i^{(j)}$) then report("RM schedulable");

Blocking Time Computation

- Precise algorithm based on exhaustive search: exponential cost
- Here: approximative solution
- Assumption: no nested critical sections

Lemma: Transitive priority inheritance can only occur in the presence of nested critical sections.



Blocking Time

priority ceiling C(S)=priority of the highest-priority job that can lock S

Theorem: In the absence of nested critical sections, a critical section of job J guarded by semaphore S can only block job J' if priority(J) < priority(J') \leq C(S).

Blocking Time

 D_{j,k}: duration of longest critical section of task τ_j, guarded by semaphore S_k

Blocking Time

- $B_i \leq \sum_{j=i+1}^n \max_k [D_{j,k} : C(S_k) \geq P_i]$
- $B_i \leq \sum_{k=1}^{m} \max_{j>i} [D_{j,k} : C(S_k) \geq P_i]$

where the task set consists of n periodic tasks that use m distinct semaphores.

Example

$$\begin{array}{|c|c|c|c|c|} \hline \textbf{D}_{ik} & S_a & S_b & S_c \\ \hline \tau_1 & 1 & 1 & * \\ \hline \tau_2 & * & 8 & 2 \\ \hline \tau_3 & 7 & 6 & * \\ \hline \tau_4 & 5 & 4 & 3 \end{array}$$

 $D_{ik} = *$: task τ_{I} does not use semaphore S_{k}

$$B_{1} \leq 8 + 7 + 7 = 20 \qquad B_{1} \leq 15$$

$$B_{1} \leq 7 + 8 = 15 \qquad B_{1} \leq 15$$

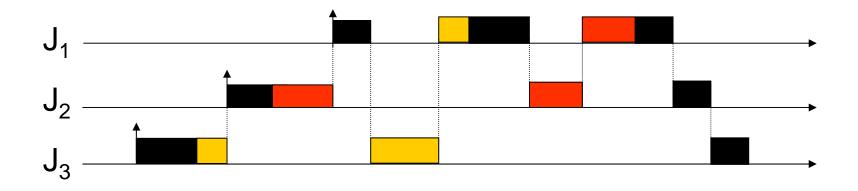
$$B_{2} \leq 7 + 5 = 12$$

$$B_{2} \leq 7 + 6 + 3 = 16$$

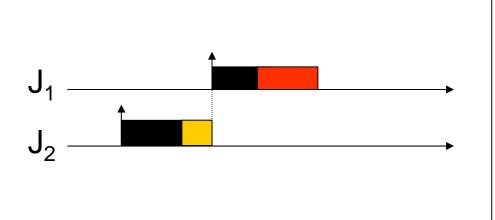
$$B_{3} \leq 5 \qquad S_{5} \leq 5 \qquad S_{5} = 5$$

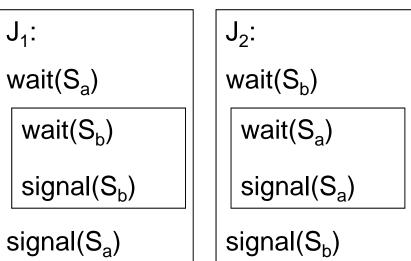
BJ BF-ES BY = 0

Problem: Chained Blocking



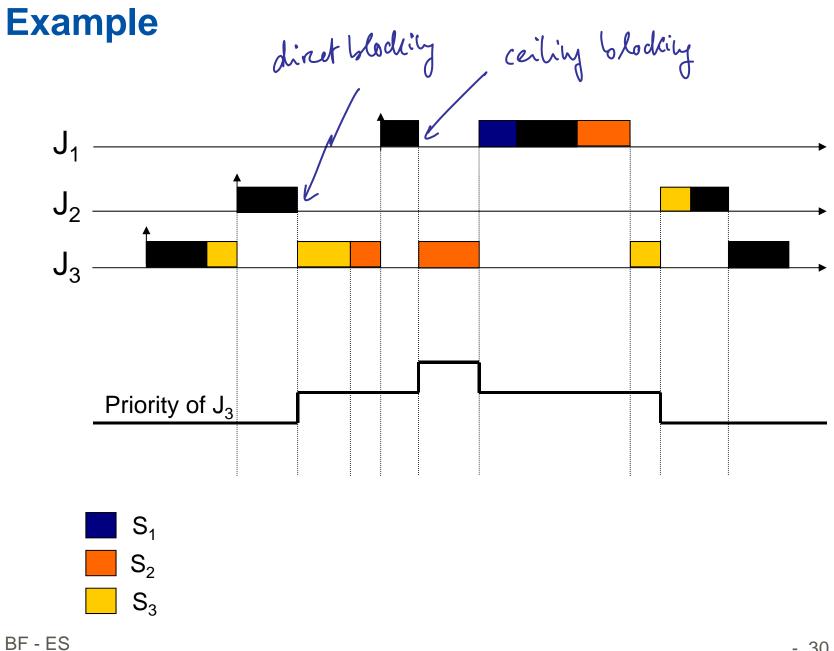
Problem: Deadlock





Priority Ceiling Protocol

- The processor is assigned to a ready job J with highest priority.
- To enter a critical section, J needs priority > C(S*), where S* is the currently locked semaphore with max C.
 → otherwise J "blocks on semaphore" and priority of J is inherited by job J' holding S*.
- When J' exits critical section, its priority is updated to the highest priority of some job that is blocked by J' (or to the nominal priority if no such job exists).



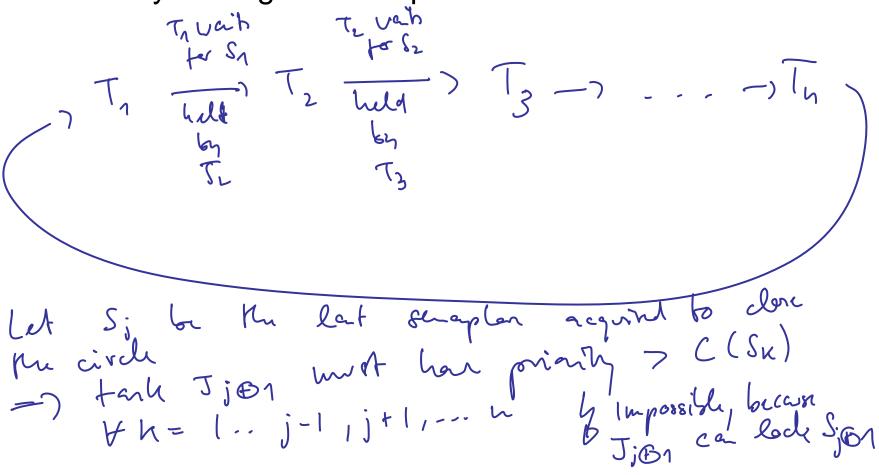
- 30 -

Priority Ceiling Protocol

Theorem (Sha/Rajkumar/Lehoczky): Under the Priority Ceiling Protocol, a job can be blocked for at most the duration of one critical section.

Priority Ceiling Protocol

The Priority Ceiling Protocol prevents deadlocks.



BF - ES