Embedded Systems

17

REVIEW: Periodic scheduling

• Given:

- A set of periodic tasks $\Gamma = \{\tau_1, ..., \tau_n\}$ with
 - phases Φ_i (arrival times of first instances of tasks),
 - periods T_i (time difference between two consecutive activations)
 - relative deadlines D_i (deadline relative to arrival times of instances)
 - computation times C_i
- \Rightarrow *j* th instance $\tau_{i, j}$ of task τ_i with
 - arrival time $a_{i,j} = \Phi_i + (j-1) T_i$,
 - deadline $d_{i, j} = \Phi_i + (j-1) T_i + D_i$,

Find a feasible schedule

- start time $s_{i, j}$ and
- finishing time f_{i, j}

BF - ES

REVIEW: An example for periodic scheduling

	τ_1	τ2
Φ_{i}	0	0
T _i	3	4
C _i	2	2
D _i	3	4

$$T_{1} \cdot T_{2} = 12$$

Lithic 12 with:

$$\frac{12}{3} = 4 \text{ exection of } T_{3}$$

$$\frac{12}{4} = 3 \text{ exection of } T_{2}$$

No feasible schedule for single processor.

REVIEW: Processor utilization

$$U = \sum_{i=1}^{n} \frac{C_i}{T_i}.$$

- Define $U_{bnd}(A) = \inf \{U(\Gamma) \mid \Gamma \text{ is not schedulable by algorithm } A\}$.
- If U_{bnd}(A) > 0 then a simple, sufficient criterion for schedulability by A can be based on processor utilization:
 - If $U(\Gamma) < U_{bnd}(A)$ then Γ is schedulable by A.
 - However, if U_{bnd}(A) < U(Γ) ≤ 1, then Γ may or may not be schedulable by A.
- Theorem: A set of periodic tasks τ₁, ..., τ_n with D_i = T_i is schedulable with EDF iff U ≤ 1.

EDF and processor utilization factor

Theorem: A set of periodic tasks τ₁, ..., τ_n with D_i = T_i is schedulable with EDF iff U ≤ 1.

Time anytow at
$$t_2$$
:
 $(t_2 - t_1) < \sum C_i$
 $a_{i,j} > t_n$
 $d_{i,j} = t_2$
 $= \sum_{i=1}^{n} \left\lfloor \frac{t_2 - t_1}{T_i} \right\rfloor \cdot C_i$
 $= (t_2 - t_1) \cdot \sum_{i=1}^{n} \frac{c_i}{T_i}$
 $= (t_2 - t_1) \cdot M$
BF-ES

Rate monotonic scheduling (RM)

- Rate monotonic scheduling (RM) (Liu, Layland '73):
 - Assign fixed priorities to tasks τ_i:
 - priority(τ_i) = 1/T_i
 - I.e., priority reflects release rate
 - Always execute ready task with highest priority
 - Preemptive: currently executing task is preempted by newly arrived task with shorter period.

Example for RM (1)

	τ_1	τ ₂	τ_3
Φ_{i}	0	0	0
T _i	4	6	12
C _i	2	1	4
D _i	4	6	12

Example for RM (2)

	τ_1	τ ₂	τ_3
Φ_{i}	0	0	0
T _i	4	5	10
C _i	2	2	1
D _i	4	5	10

┢

Example for RM (2)

	τ_1	τ ₂	τ_3
Φ_{i}	0	0	0
T _i	4	5	10
C _i	2	2	1
D _i	4	5	10

 $U = \frac{2}{4} + \frac{2}{5} + \frac{1}{10} = 1$

Optimality of Rate Monotonic Scheduling

- Theorem (Liu, Layland, 1973): RM is optimal among all fixed-priority scheduling algorithms.
- Def.: The response time R_{i, j} of an instance j of task i is the time (measured from the arrival time) at which the instance is finished: R_{i, j} = f_{i, j} – a_{i, j}.
- The critical instant of a task is the time at which the arrival of the task will produce the largest response time.

REVIEW: Response times and critical instants

Observation:

For RM, the critical instant t of a task τ_i is given by the time when $\tau_{i, j}$ arrives together with all tasks $\tau_1, ..., \tau_{i-1}$ with higher priority.

Response times and critical instants

- For our "worst case task sets" we focus on the critical instants where an instance of a task arrives together with all higher priority tasks.
- A task set is schedulable, if the response time at these critical instants is not larger than the relative deadline.

Non-RM Schedule

Schedule feasible iff $C_1 + C_2 \le T_1$

RM-Schedule

- Let $F = \lfloor T_2 / T_1 \rfloor$ be the number of periods of τ_1 entirely contained in T_2 .
- Case 1:
 - The computation time C_1 is short enough, so that all requests of τ_1 within period of τ_2 are completed before second request of τ_2 .
 - I.e. $C_1 \le T_2 F T_1$

Schedule feasible if $(F+1)C_1 + C_2 \le T_2$

BF - ES

RM-Schedule

- Case 2:
 - The second request of τ_2 arrives when τ_1 is running.
 - I.e. $C_1 \ge T_2 F T_1$

Schedule feasible if $FC_1 + C_2 \leq FT_1$

Le show: If tank set is scheduleth by Non-RM **Proof of Liu/Layland** =) schedeth by RM $(a_{4}cA: C_{A} \in T_{2} - FT_{A})$ $C_{\Lambda} + C_{2} \in T_{\Lambda} \xrightarrow{?} (F+\Lambda) C_{\Lambda} + C_{2} \leq T_{2}$ = $F(C_1 + F(2 \leq FT_1)$ $= (Fr1) C_{1} + C_{2} \in FT_{1} + C_{1}$ $-1 - \frac{1}{(n+1)} - \frac{1}{(n+1$

 $(a_{\delta L} 2: (n^2) T_2 - F T_1)$ $(_{\lambda} + (_{2} \leq T_{1}) \xrightarrow{2}) F(_{\lambda} + (_{2} \leq FT_{1}))$ $=) F(_{\lambda} + F(_{2} \leq FT_{1}) \xrightarrow{1}$ $=) F(_{\lambda} + (_{2} \leq FT_{1}) \xrightarrow{1})$ = 2,1F 7,1

REVIEW: Processor utilization as a schedulability criterion

- Given: a scheduling algorithm A
- Define $U_{bnd}(A) = \inf \{U(\Gamma) \mid \Gamma \text{ is not schedulable by algorithm } A\}$.
- If U_{bnd}(A) > 0 then a simple, sufficient criterion for schedulability by A can be based on processor utilization:
 - If $U(\Gamma) < U_{bnd}(A)$ then Γ is schedulable by A.
 - However, if U_{bnd}(A) < U(Γ) ≤ 1, then Γ may or may not be schedulable by A.

Computation of U_{bnd}(RM)

- We focus on task sets with 2 tasks (general case: n tasks)
- Computation of U_{bnd}(RM, 2) = inf {U(Γ) | Γ is not schedulable by RM, |Γ| = 2}.

Idea:

- Construct set of tasks with following properties:
 - 1. Set of tasks is schedulable by RM.
 - 2. Any increase of computation times makes the set of tasks non-schedulable.
 - 3. Processor utilization is minimal under properties 1. and 2.

Computation of U_{bnd}(RM, 2)

Worst case situation constructed for 2 processes:

Computation of U_{bnd}(RM, 2)

- Consider a set of 2 periodic tasks τ_1 and τ_2 with $T_1 \leq T_2$ \Rightarrow priority(τ_1) > priority(τ_2).
- We consider the critical instant when τ_1 and τ_2 arrive at the same time.
- We construct a worst case scenario where any increase of computation times destroys schedulability and minimize the processor utilization.

This is done by manipulating

- computation times C₁ and C₂ and
- T_1 and T_2 (more precisely T_2 / T_1)

Case 1: $C_1 \le T_2 - F T_1$

Case 2: $C_1 \ge T_2 - F T_1$

=7 U in oran monstarically with
$$C_1$$

=) U is minimal for $C_1 = T_2 - T_1$
(in care2)

-) (n=T2-FIn in both canon

Manipulating T_2/T_1 $\mathcal{U} = \frac{T_1}{T_2} F + \frac{C_1}{T_3} \left(\frac{T_2}{T_3} - F \right) \qquad (\mathcal{X})$ $= \frac{T_{1}}{T_{2}}F + \frac{T_{2}-FT_{1}}{T_{2}}\left(\frac{T_{2}}{T_{1}}-F\right)$ $= \frac{T_{1}}{T_{2}}\left[F + \left(\frac{T_{2}}{T_{1}}-F\right)\left(\frac{T_{2}}{T_{1}}-F\right)\right]$ $\left(Let G = \frac{T_2}{T_1} - F \right)$ $= \frac{T_{\Lambda}}{T_{\Lambda}} \left(F + G^{2} \right)$

$$\begin{split} & (I = \frac{T_{1}}{T_{2}} (F + G^{2}) = \\ & = \frac{F + G^{L}}{T_{2}} = \frac{F + G^{2}}{F + G} \qquad (**) \\ & = \frac{F + G - (G - G^{2})}{F + G} = (- \frac{G (A - G)}{F + G}) \\ & = \frac{F + G - (G - G^{2})}{F + G} = (- \frac{G (A - G)}{F + G}) \\ & (I = \frac{T_{2}}{T_{1}} - \frac{L}{T_{2}} + \frac{T_{2}}{T_{1}} + \frac{U}{T_{2}} + \frac{U}{T_{2}} = 0 \\ & = F + G \\ & (I = \frac{T_{2}}{T_{1}} - \frac{L}{T_{2}} + \frac{T_{2}}{T_{1}} + \frac{U}{T_{2}} = 0 \\ & = F + G \\ & = \frac{1}{T_{1}} - \frac{L}{T_{2}} + \frac{T_{2}}{T_{1}} + \frac{U}{T_{2}} = 0 \\ & = \frac{1}{T_{1}} + \frac{U}{T_{2}} + \frac{U}{T_{2}} = 0 \\ & = 1$$

BF - ES

$$\begin{aligned} \mathcal{U} &= \frac{F + C^2}{F + 6} \quad (F \times) \quad , \quad F = 1 \\ &= \frac{\Lambda + G^2}{\Lambda + 6} \\ \text{Minimize } \mathcal{U} \text{ onv } G : \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{2 G \cdot (\Lambda + G)^2 - (\Lambda + G^2)}{(\Lambda + G)^2} = \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{2 G \cdot (\Lambda + G)^2 - (\Lambda + G^2)}{(\Lambda + G)^2} = \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{2 G \cdot (\Lambda + G)^2 - (\Lambda + G^2)}{(\Lambda + G)^2} = \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} = \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} = \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} = \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} = \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} = \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} = \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} = \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} = \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} = \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} = \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} = \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} = \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} = \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} = \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} = \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}}{\partial G} &= \frac{G^2 + 2G - 1}{(\Lambda + G)^2} \\ \frac{\partial \mathcal{U}$$

BF

$$\mathcal{U} = \frac{\Lambda + G^{2}}{\Lambda + G} = \frac{\Lambda + (-1 + \sqrt{2})^{2}}{\Lambda + (-1 + \sqrt{2})} =$$

$$= \frac{4 - 2\sqrt{2}}{\sqrt{2}} = 2(\sqrt{2} - 1) \approx 0.83$$

Computation of U_{bnd}(RM)

- Result for two processes: Any set of two periodic tasks with a processor utilization factor $\leq U_{bnd} = 2(2^{1/2} - 1)$ can be scheduled by RM.
- Similarly, for the general case of **n** processes the following can be shown: Any set of **n** periodic tasks with a processor utilization factor $\leq U_{bnd} = n(2^{1/n} - 1)$ can be scheduled by RM.

Computation of U_{bnd}(RM)

- Any set of **n** periodic tasks with a processor utilization factor $\leq U_{bnd} = n(2^{1/n} 1)$ can be scheduled by RM.
- U_{bnd} is decreasing with n and converges to ln 2 ≈ 0.69 for n $\rightarrow \infty$

BF - ES