
- 1 -BF - ES

Embedded Systems 16

- 2 -BF - ES

REVIEW: Aperiodic scheduling

 Given:
 A set of non-periodic tasks {J1, …, Jn} with

• arrival times ai, deadlines di, computation times Ci
• precedence constraints
• resource constraints

 Class of scheduling algorithm:
• Preemptive, non-preemptive
• Off-line / on-line
• Optimal / heuristic
• One processor / multi-processor
• …

 Cost function:
• Minimize maximum lateness
• …

 Find:
 Feasible schedule
 Optimal schedule according to given cost function

Ji ai si fi di

Ci

0

- 3 -BF - ES

REVIEW: EDD – Earliest Due Date

EDD: execute the tasks in order of non-decreasing deadlines

 Lemma:
If arrival times are synchronous, then preemption does not help, i.e.
if there is a preemptive schedule with maximum lateness Lmax, then
there is also a non-preemptive schedule with maximum lateness Lmax.

 Theorem (Jackson ’55):
Given a set of n independent tasks with synchronous arrival times,
any algorithm that executes the tasks in order of non-decreasing
deadlines is optimal with respect to minimizing the maximum lateness.

- 4 -BF - ES

REVIEW: EDF – Earliest Deadline First

 EDF: At every instant execute the task with the earliest
absolute deadline among all the ready tasks.

 Theorem (Horn ’74):
Given a set of n independent task with arbitrary arrival
times, any algorithm that at every instant executes the
task with the earliest absolute deadline among all the
ready tasks is optimal with respect to minimizing the
maximum lateness.

- 5 -BF - ES

REVIEW: Non-preemptive version

 Theorem (Jeffay et al. ’91): EDF is an optimal non-idle
scheduling algorithm also in a non-preemptive task
model.

 Non-preemptive scheduling with idle schedules allowed
is NP-hard

 Possible approaches:
 Heuristics
 Bratley’s algorithm: Branch-and-bound

- 6 -BF - ES

Scheduling with precedence constraints

J1 J2 J3 J4 J5 J6

ai 0 0 0 0 0 0

Ci 1 1 1 1 1 1

di 2 5 4 3 5 6

J2 J3

J4 J5 J6

J1

- 7 -BF - ES

Example

One of the following algorithms is optimal. Which one?

Algorithm 1:
1. Among all sources in the

precedence graph select the
task T with earliest deadline.
Schedule T first.

2. Remove T from G.

3. Repeat.

Algorithm 2:
1. Among all sinks in the

precedence graph select the
task T with latest deadline.
Schedule T last.

2. Remove T from G.

3. Repeat.

- 8 -BF - ES

Example (continued)

 Algorithm 1:

0 1 2 3 4 5 6 7
t

d1 d5d3d4 d2

J2 J3

J4 J5 J6

J1 2

5 4

3 5 6

d6

- 9 -BF - ES

Example (continued)

 Algorithm 2:

J2 J3

J4 J5 J6

J1 2

5 4

3 5 6

0 1 2 3 4 5 6 7
t

d1 d5d3d4 d2 d6

- 10 -BF - ES

Example (continued)

 Algorithm 1 is not optimal.
 Algorithm 1 is the generalization of EDF to the case with

precedence conditions.

 Is Algorithm 2 optimal?
 Algorithm 2 is called Latest Deadline First (LDF).

 Theorem (Lawler 73):
LDF is optimal wrt. maximum lateness.

- 11 -BF - ES

LDF

 LDF is optimal.
 LDF can be applied only as off-line algorithm.

 Complexity of LDF:
 O(|E|) for repeatedly computing the current set of tasks with no

successors in the precedence graph G = (V, E).
 O(log n) for inserting tasks into the ordered set (ordering wrt. di).
 Overall cost: O(n * max(|E|,log n))

- 12 -BF - ES

LDF

Theorem (Lawler 73):
LDF is optimal wrt. maximum lateness.

- 13 -BF - ES

- 14 -BF - ES

Preemptive

 Non-preemptive scheduling with non-synchronous
arrival times, deadlines and precedence constraints is
NP-hard.

 Modified EDF for preemptive scheduling,
arbitrary arrival times

- 15 -BF - ES

EDF with precedence constraints

1. Modify arrival times
 For any initial node Ji of the precedence graph,

set ai* := ai.
 For any task Ji such that all predecessors have been processed,

set ai* := max {ai, ah*+Ch Jh Ji}

2. Modify deadlines
 For any terminal node Ji of the precedence graph,

set di* := di.
 For any task Ji such that all successors have been processed,

set di* := min {di, dh*-Ch Ji Jh}

(Jh Ji : Jh is a direct predecessor of Ji)

- 16 -BF - ES

Example J1 J2 J3 J4 J5 J6

Ai 1 0 3 1 1 1
Ci 1 1 1 1 1 1

di 5 5 6 7 4 6

J2 J3

J4 J5 J6

J1

J3

J4

J6

J2

J1

0 1 2 3 4 5 6 7 8 9 10

J5

- 17 -BF - ES

EDF with precedence constraints

Theorem: The given task set is schedulable such that the
precedence constraints are met if and only if the modified
task set is schedulable under EDF.

- 18 -BF - ES

- 19 -BF - ES

Optimal scheduling algorithms for
periodic tasks

- 20 -BF - ES

Periodic scheduling

 Given:
 A set of periodic tasks = {1, …, n} with

• phases i (arrival times of first instances of tasks),
• periods Ti (time difference between two consecutive activations)
• relative deadlines Di (deadline relative to arrival times of instances)
• computation times Ci

 j th instance i, j of task i with
• arrival time ai, j = i + (j-1) Ti,
• deadline di, j = i + (j-1) Ti + Di,

 Find a feasible schedule
• start time si, j and
• finishing time fi, j

i i

Ci

Ti

Di

i+(j-1)Ti

Instance i, jInstance i, 1

0

- 21 -BF - ES

Assumptions

A.1. Instances of periodic task i are regularly activated with constant
period Ti.

A.2. All instances have same worst case execution time Ci.
A.3. All instances have same relative deadline Di, here in most cases

equal to Ti (i.e., di, j = i + j Ti)
A.4. All tasks in are independent.
A.5. Overhead for context switches is neglected, i.e. assumed to be 0

in the theory.

 Basic results based on these assumptions form the core of
scheduling theory.

 For practical applications, assumptions A.3. and A.4. can be
relaxed, but results have to be extended.

- 22 -BF - ES

Examples for periodic scheduling (1)

1 2

i 0 0
Ti 2 4
Ci 1 2
Di 1 4

1

2
0 1 2 3 4 5 6 7 8 9 10 11 12

 Schedulable, but only preemptive schedule possible.

- 23 -BF - ES

Examples for periodic scheduling (2)

1 2

i 0 0
Ti 2 4
Ci 1 2
Di 2 4

1

2
0 1 2 3 4 5 6 7 8 9 10 11 12

 Schedulable with non-preemptive schedule.

- 24 -BF - ES

Examples for periodic scheduling (3)

1 2

i 0 0
Ti 3 4
Ci 2 2
Di 3 4

 No feasible schedule for single processor.

- 25 -BF - ES

Examples for periodic scheduling (3)

1 2

i 0 0
Ti 3 4
Ci 2 2
Di 3 4

 No feasible schedule for single processor.

- 26 -BF - ES

Processor utilization

Definition:
Given a set of n periodic tasks, the processor
utilization U is given by

- 27 -BF - ES

Processor utilization as a schedulability criterion

 Given: a scheduling algorithm A
 Define Ubnd(A) = inf {U() | is not schedulable by algorithm A}.

 If Ubnd(A) > 0 then a simple, sufficient criterion for schedulability by
A can be based on processor utilization:
 If U() < Ubnd(A) then is schedulable by A.
 However, if Ubnd(A) < U() ≤ 1, then may or may not be schedulable

by A.

 Question:
Does a scheduling algorithm A exist with Ubnd(A) = 1?

- 28 -BF - ES

Processor utilization

 Question:
Does a scheduling algorithm A exist with Ubnd(A) = 1?

 Answer:
 No, if Di < Ti allowed.
 Example:

 Yes, if Di = Ti (or Di ≥ Ti)) Earliest Deadline First (EDF)
 In the following: assume Di = Ti

1 2

i 0 0
Ti 2 2
Ci 1 1
Di 1 1

