
- 1 -BF - ES

Embedded Systems 13

- 2 -BF - ES

REVIEW: Embedded System Hardware

Embedded system hardware is frequently used

in a loop (“hardware in a loop“):

 cyber-physical systems

- 3 -BF - ES

Microcontrollers

 Integrate several components of a microprocessor

system onto one chip
CPU, Memory, Timer, IO

 Low cost,

small packaging

 Easy integration

with circuits

 Single-purpose

PIC16C8X

- 4 -BF - ES

Application Specific Circuits (ASICS)

or Full Custom Circuits

 Approach suffers from

 long design times,

 lack of flexibility

(changing standards) and

 high costs

(e.g. Mill. $ mask costs).

 Custom-designed circuits

necessary

 if ultimate speed or

 energy efficiency is the goal and

 large numbers can be sold.

- 5 -BF - ES

Energy

© Hugo De Man,

IMEC, Philips, 2007

- 6 -BF - ES

Low Power vs. Low Energy

Consumption

 Minimizing power consumption important for

• the design of the power supply

• the design of voltage regulators

• the dimensioning of interconnect

• short term cooling

 Minimizing energy consumption important due to

• restricted availability of energy (mobile systems)

– limited battery capacities (only slowly improving)

– very high costs of energy (solar panels, in space)

• cooling

– high costs

– limited space

• dependability

• long lifetimes, low temperatures

- 7 -BF - ES

Dynamic power management (DPM)

 RUN: operational

 IDLE: a SW routine

may stop the CPU

when not in use, while

monitoring interrupts

 SLEEP: Shutdown of

on-chip activity

RUN

SLEEPIDLE

400mW

160µW50mW

90µs

10µs

10µs
160ms

Example: STRONGARM SA1100

Power fault

signal

- 8 -BF - ES

Fundamentals of dynamic voltage

scaling (DVS)

Power consumption of CMOS

circuits (ignoring leakage):

frequencyclock :

tagesupply vol:

ecapacitanc load:

activity switching:

with2

f

V

C

fVCP

dd

L

ddL

) than

voltage threshhold

 with

ddt

t

tdd

dd
L

VV

V

VV

V
Ck

(

:

2

Delay for CMOS circuits:

[Courtesy,

Yasuura, 2000]

- 9 -BF - ES

Variable-voltage/frequency example:

INTEL Xscale

F
ro

m
 I

n
te

l’s
 W

e
b
 S

it
e

OS should

schedule

distribution

of the

energy

budget.

- 10 -BF - ES

Low voltage, parallel operation more efficient

than high voltage, sequential operation

Basic equations

Power: P ~ VDD² ,

Maximum clock frequency: f ~ VDD ,

Energy to run a program: E = P t, with: t = runtime

Time to run a program: t ~ 1/f

Changes due to parallel processing, with operations per clock:

Clock frequency reduced to: f ’ = f / ,

Voltage can be reduced to: VDD’ =VDD / ,

Power for parallel processing: P° = P / ² per operation,

Power for operations per clock: P’ = P° = P / ,

Time to run a program is still: t’ = t,

Energy required to run program: E’ = P’ t = E /

Argument in favour of voltage scaling,

VLIW processors, and multi-cores

Rough

approxi-

mations!

- 11 -BF - ES

Application: VLIW processing and voltage

scaling in the Crusoe processor

 VDD: 32 levels (1.1V - 1.6V)

 Clock: 200MHz - 700MHz in increments of 33MHz

Scaling is triggered when CPU load change is detected

by software (~1/2 ms).

 More load: Increase of supply voltage (~20 ms/step),

followed by scaling clock frequency

 Less load: reduction of clock frequency, followed by

reduction of supply voltage

Worst case (1.1V to 1.6V VDD, 200MHz to 700MHz) takes

280 ms

- 12 -BF - ES

Result (as published by transmeta)

[www.transmeta.com]

Pentium Crusoe

Running the same multimedia application.

- 13 -BF - ES

Digital Signal Processing (DSP)

Example: Filtering

Signal at t=ts (sampling points)

- 14 -BF - ES

Filtering in digital signal processing

outer loop over

sampling times ts

{ MR:=0; A1:=1; A2:=s-1;

MX:=w[s]; MY:=a[0];

for (k=0; k <= (n−1); k++)

{ MR:=MR + MX * MY;

MX:=w[A2]; MY:=a[A1];
A1++; A2--;

}

x[s]:=MR;

}

ADSP 2100

- 15 -BF - ES

DSP-Processors: multiply/accumulate (MAC)

and zero-overhead loop (ZOL) instructions

MR:=0; A1:=1; A2:=n-2; MX:=x[n-1]; MY:=a[0];

for (j:=1 to n)

{MR:=MR+MX*MY; MY:=a[A1]; MX:=x[A2]; A1++; A2--}

Multiply/accumulate (MAC) instruction Zero-overhead loop (ZOL)

instruction preceding MAC

instruction.

Loop testing done in parallel to

MAC operations.

- 16 -BF - ES

Heterogeneous registers

MR

MF

MX MY

*
+,-

AR

AF

AX AY

+,-,..

D
P

Address

generation

unit (AGU)

Address-

registers

A0, A1, A2

..

Different functionality of registers An, AX, AY, AF,MX, MY, MF, MR

Example (ADSP 210x):

- 17 -BF - ES

Separate address generation units (AGUs)

 Data memory can only be

fetched with address contained

in A,

 but this can be done in parallel

with operation in main data path

(takes effectively 0 time).

 A := A ± 1 also takes 0 time,

 same for A := A ± M;

 A := <immediate in instruction>

requires extra instruction

Example (ADSP 210x):

- 18 -BF - ES

Modulo addressing

Modulo addressing:

Am++ Am:=(Am+1) mod n

(implements ring or circular

buffer in memory)

..

x[t1-1]

x[t1]

x[t1-n+1]

x[t1-n+2]

..

Memory, t=t1 Memory, t2=t1+1

sliding window
x

t1
t

n most

recent

values

..

x[t1-1]

x[t1]

x[t1+1]

x[t1-n+2]

..

- 19 -BF - ES

Returns largest/smallest number in case of over/underflows

Example:

a 0111

b + 1001

standard wrap around arithmetic (1)0000

saturating arithmetic 1111

(a+b)/2: correct 1000

wrap around arithmetic 0000

saturating arithmetic + shifted 0111

Appropriate for DSP/multimedia applications:
• No timeliness of results if interrupts are generated for overflows

• Precise values less important

• Wrap around arithmetic would be worse.

Saturating arithmetic

„almost correct“

- 20 -BF - ES

Multimedia-Instructions/Processors

 Multimedia instructions exploit many registers, adders etc

that are quite wide (32/64 bit),

 whereas most multimedia data types are narrow

(e.g. 8 bit per color, 16 bit per audio sample per channel)

 2-8 values can be stored per register and added. E.g.:

+

4 additions per instruction;

carry disabled at word

boundaries.

- 21 -BF - ES

Key idea of very long instruction word
(VLIW) computers

 Instructions included in long instruction packets.

Instruction packets are assumed to be executed in

parallel.

 Fixed association of packet bits with functional

units.

- 22 -BF - ES

Very long instruction word (VLIW) architectures

 Very long instruction word

(“instruction packet”) contains several instructions, all of which are

assumed to be executed in parallel.

 Compiler is assumed to generate these “parallel” packets

 Complexity of finding parallelism is moved from the hardware

(RISC/CISC processors) to the compiler;

Ideally, this avoids the overhead (silicon, energy, ..) of identifying

parallelism at run-time.

A lot of expectations into VLIW machines

 Explicitly parallel instruction set computers (EPICs) are an

extension of VLIW architectures: parallelism detected by compiler,

but no need to encode parallelism in 1 word.

- 23 -BF - ES

Large # of delay slots,

a problem of VLIW processors

add sub and or

sub mult xor div

ld st mv beq

- 24 -BF - ES

Large # of delay slots,

a problem of VLIW processors

add sub and or

sub mult xor div

ld st mv beq

- 25 -BF - ES

Large # of delay slots,

a problem of VLIW processors

The execution of many instructions has been started before it is

realized that a branch was required.

Nullifying those instructions would waste compute power

 Executing those instructions is declared a feature, not a bug.

 How to fill all “delay slots“ with useful instructions?

 Avoid branches wherever possible.

add sub and or

sub mult xor div

ld st mv beq

- 26 -BF - ES

Predicated execution:

Implementing IF-statements „branch-free“

Conditional Instruction „[c] I“ consists of:

• condition c

• instruction I

c = true => I executed

c = false => NOP

- 27 -BF - ES

Predicated execution:

Implementing IF-statements „branch-free“:

TI C6x

if (c)

{ a = x + y;

b = x + z;

}

else

{ a = x - y;

b = x - z;

}

Conditional branch

[c] B L1

NOP 5

B L2

NOP 4

SUB x,y,a

|| SUB x,z,b

L1: ADD x,y,a

|| ADD x,z,b

L2:

Predicated execution

[c] ADD x,y,a

|| [c] ADD x,z,b

|| [!c] SUB x,y,a

|| [!c] SUB x,z,b

max. 12 cycles 1 cycle

- 28 -BF - ES

EPIC: TMS 320C6xx as an example

31 0

0

Instr.

A

31 0

0

Instr.

D

31 0

1

Instr.

F

31 0

0

Instr.

G

31 0

1

Instr.

E

31 0

1

Instr.

C

31 0

1

Instr.

B

Cycle Instruction

1 A

2 B C D

3 E F G

Instructions B, C and D use

disjoint functional units,

cross paths and other data

path resources. The same

is also true for E, F and G.

1 Bit per instruction encodes end of parallel exec.

Parallel execution cannot span several packets.

