
- 1 -BF - ES

Embedded Systems 11

- 2 -BF - ES

REVIEW: Inertial and transport delay model

 Example for signal assignment:

outp <= not inp after 10 ns;

outp??

inp

5 10 15 20 25 30 35

outp??

- 3 -BF - ES

REVIEW: Semantics of transport delay model

Signal assignments change transaction list.

 Before transaction (s, t1, v1) is inserted into transaction

list, all transactions in the transaction list (s, t2, v2)

with t2 t1 are removed from transaction list.

- 4 -BF - ES

Example for transport delay model

 Transaction list:

 At 5ns:

(outp, 25ns, `0`)

 At 10 ns:

(outp, 22.5ns, `1`), (outp, 25ns, `0`)

Remove (outp, 25ns, `0`)!

 (outp, 22.5ns, `1`)

Inverter
inp outp

inv : process(inp)

begin

if inp=`1` then

outp <= transport `0` after 20 ns;

elsif inp=`0` then

outp <= transport `1` after 12.5 ns

end if;

end process inv;

outp

inp

5 10 15 20 25 30 35

- 5 -BF - ES

Semantics of inertial delay model

 Semantics for more general version of inertial delay

statement:

 Inertial delay absorbs pulses at the inputs which are shorter than

the delay specified for the gate / operation.

 Key word reject permits absorbing only pulses which are shorter

than specified delay:

• Example:

– outp <= reject 3 ns inertial not inp after 10 ns;

– Only pulses smaller than 3 ns are absorbed.

– outp <= reject 10 ns inertial not inp after 10 ns;

and

outp <= not inp after 10 ns;

are equivalent.

- 6 -BF - ES

Semantics of inertial delay model

 Rule 1 as for transport delay model:
Before transaction (s, t1, v1) is inserted into transaction list, all
transactions in the transaction list (s, t2, v2) with t2 t1 are removed
from transaction list.

 Rule 2 removes also some transactions with times < t1:

 Suppose the time limit for reject is rt.

 Transactions for signal s with time stamp in the intervall (t1 – rt, t1) are
removed.

 Exception:
If there is in (t1 – rt, t1) a subsequence of transactions for s immediately
before (s, t1, v1) which also assign value v1 to s, then these transactions
are preserved.

- 7 -BF - ES

Example

 Transaction list until „wait for 15 ns“:
(o1, 0ns, `0`), (o1, 5ns, `0`), (o1, 15ns, `1`), (o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`),

(o2, 0ns, `0`), (o2, 5ns, `0`), (o2, 15ns, `1`), (o2, 20ns, `0`), (o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 45ns, `1`), (o2, 50ns, `0`)

 Transaction list when process is reactivated at time 15ns:
(o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`),

(o2, 20ns, `0`), (o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 45ns, `1`), (o2, 50ns, `0`)

 …

process

begin

o1 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,

`0` after 50 ns;

-- same signal assignment for o2

o2 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,

`0` after 50 ns;

wait for 15 ns;

o2 <= reject 22 ns inertial `1` after 25 ns;

wait;

end process;

- 8 -BF - ES

Example

 At time 15ns:

 insert transaction (o2, 40ns, `1`).

 Remove transactions with time stamp 40ns.

 Results in preliminary transaction list:
(o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`),
(o2, 20ns, `0`), (o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 40ns, `1`)

 …

process

begin

o1 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,

`0` after 50 ns;

-- same signal assignment for o2

o2 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,

`0` after 50 ns;

wait for 15 ns;

o2 <= reject 22 ns inertial `1` after 25 ns;

wait;

end process;

- 9 -BF - ES

process

begin

o1 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,

`0` after 50 ns;

-- same signal assignment for o2

o2 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,

`0` after 50 ns;

wait for 15 ns;

o2 <= reject 22 ns inertial `1` after 25 ns;

wait;

end process;

Example

 Results in preliminary transaction list:
(o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`),
(o2, 20ns, `0`), (o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 40ns, `1`)

 Rule 2:
 (o2, 25ns, `1`), (o2, 30ns, `1`) are preserved,

 (o2, 20ns, `0`) is removed.

 Resulting transaction list:
(o1, 20ns, `0`), (o1, 25ns, `1`), (o1, 30ns, `1`), (o1, 45ns, `1`), (o1, 50ns, `0`),
(o2, 25ns, `1`), (o2, 30ns, `1`), (o2, 40ns, `1`)

Rule 2:

 Transactions for signal o2 with

time stamp in the intervall (40ns –

22ns, 40ns) = (18ns, 40ns) are

removed.

 Exception:

If there is in (18ns, 40ns) a

subsequence of transactions for

o2 immediately before

(o2, 40ns, `1`) which also assign

value `1` to o2, then these

transactions are preserved.

- 10 -BF - ES

process

begin

o1 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,

`0` after 50 ns;

-- same signal assignment for o2

o2 <= transport `0`, `0` after 5ns, `1` after 15 ns, `0` after 20ns,

`1` after 25 ns, `1` after 30ns, `1` after 45 ns,

`0` after 50 ns;

wait for 15 ns;

o2 <= reject 22 ns inertial `1` after 25 ns;

wait;

end process;

Example

 Resulting wave form:

o1

o2

5 10 15 20 25 30 35 40 45 50 55

- 11 -BF - ES

Functions and procedures

 Apart from entities / architectures there are also

functions and procedures in the usual (software) sense.

 Functions are typically used for providing conversion

between data types or for defining operators on user-

defined data types.

 Procedures may have parameters of directions in, out

and inout.

 in comparable to call by value,

 out for providing results,

 inout comparable to call by reference.

- 12 -BF - ES

architecture RTL of TEST is

function BOOL2BIT (BOOL: boolean) return bit is
begin

if BOOL then return '1'; else return '0'; end if;
end BOOL2BIT;

procedure EVEN_PARITY (
signal D: in bit_vector(7 downto 0);
signal PARITY : out bit) is

variable temp : bit;

begin

....

end;

signal DIN : bit_vector(7 downto 0);
signal BOOL1 : boolean;
signal BIT1, PARITY : bit;

begin

do_it: process (BOOL1, DIN)
begin

BIT1 <= BOOL2BIT(BOOL1);
EVEN_PARITY(DIN, PARITY);

end process;
....

end;

Example

- 13 -BF - ES

Parameterized hardware

 Conditional component instantiation with if … generate

construct.

 Iterative component instantiation with for … generate

construct.

 Parameterized design with generic parameters.

- 14 -BF - ES

RSTn

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

CLK

SOSI
T(6) T(5) T(4) T(3) T(2) T(1) T(0)

entity SHIFT8 is

port (RSTn, CLK, SI : in std_logic;

SO : out std_logic);

end SHIFT8;

Example: 8-bit shift register

- 15 -BF - ES

architecture RTL1 of SHIFT8 is

begin

end RTL1;

component DFF

port (RSTn, CLK, D: in std_logic;

Q : out std_logic);

end component;

signal T: std_logic_vector(6 downto 0);

bit7 : DFF

port map (RSTn => RSTn, CLK => CLK,

D => SI, Q => T(6));

bit6 : DFF

port map (RSTn => RSTn, CLK => CLK,

D => T(6), Q => T(5));

bit5 : DFF

port map (RSTn, CLK, T(5), T(4));

...

bit1 : DFF

port map (RSTn, CLK, T(1), T(0));

bit0 : DFF

port map (RSTn, CLK, T(0), S0);

RSTn

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

CLK

SOSI
T(6) T(5) T(4) T(3) T(2) T(1) T(0)

- 16 -BF - ES

architecture RTL2 of SHIFT1024 is

begin

end RTL2;

component DFF

port (RSTn, CLK, D: in std_logic;

Q : out std_logic);

end component;

signal T: std_logic_vector(1022 downto 0);

g0: for i in 1023 downto 0 generate

g1: if (i = 1023) generate

bit1023 : DFF port map (RSTn,CLK,SI,T(1022));

end generate;

g2: if (i>0) and (i<1023) generate

bitm : DFF port map (RSTn,CLK,T(i),T(i-1));

end generate;

g3: if (i=0) generate

bit0 : DFF port map (RSTn,CLK,T(0),S0);

end generate;

end generate;

Example: 1024-bit shift register

- 17 -BF - ES

entity SHIFTn is

generic (n : positive);

port (RSTn, CLK, SI : in std_logic;

SO : out std_logic);

end SHIFTn;

architecture RTL3 of SHIFTn is

begin

end RTL3;

component DFF

port (RSTn, CLK, D: in std_logic;

Q : out std_logic);

end component;

signal T: std_logic_vector(n-2 downto 0);

g0: for i in n-1 downto 0 generate

g1: if (i = n-1) generate

bit_high : DFF port map (RSTn,CLK,SI,T(n-2));

end generate;

g2: if (i>0) and (i<n-1) generate

bitm : DFF port map (RSTn,CLK,T(i),T(i-1));

end generate;

g3: if (i=0) generate

bit0 : DFF port map (RSTn,CLK,T(0),S0);

end generate;

end generate;

Example: n-bit shift register

- 18 -BF - ES

…

component SHIFTn is

generic (n : positive);

port (RSTn, CLK, SI : in std_logic;

SO : out std_logic);

end component;

Example: n-bit shift register

 Component instantiation

…

begin

…

Shift32comp : SHIFTn

generic map (n => 32)

port map(RSTn => …,

CLK => …,

SI => …,

SO => …);

…

end;

- 19 -BF - ES

VHDL: Evaluation

 Hierarchical specification by entities / architectures /
components, (procedures and functions)

 no nested processes

 Static number of processes

 Complicated simulation semantics

 May be too low level for initial, abstract specification of
very large systems

 Mainly used for hardware simulation+synthesis

- 20 -BF - ES

REVIEW: computational models

Communication/

local computations

Shared memory Asynchronous message

passing

Communicating

finite state

machines

Statecharts,

hybrid automata,

synchronous

composition

Data flow Petri nets,

Kahn process networks,

SDF

Discrete event (DE)

model

Simulink, VHDL Distributed DE

- 21 -BF - ES

Ptolemy

 discrete-event systems

 SDF

 process networks

 Petri nets

 priority-based schedules

 synchronous/reactive

 Finite-state machines

 continuous-time

 modal systems

 Graphics, 3D animations

 Ptolemy (UC Berkeley) is an environment for

simulating multiple models of computation.

http://ptolemy.berkeley.edu/

- 22 -BF - ES

Ptolemy

 A model is a set of interconnected actors and one director

 Actor

 Input & output ports, states, & parameters

 Models of computation

 Define the interaction semantics

 Implemented in Ptolemy II by a domain

• Director + Receiver

 Director

 Manages the data flow and the scheduling of the actors

 The director fires the actors

 Receiver

 Defines the semantics of the

port buffers

- 23 -BF - ES

- 24 -BF - ES

Example: Inverted Pendulum

 Classic control problem

 Swing up the pendulum and then keep it in the upright

position

Heterogeneous Modeling and Design of

Control Systems, Liu/Liu/Eker/Lee, 2003

- 25 -BF - ES

The Ptolemy II Model

discrete controller

director

composite

actor

atomic

actor

model

continuous process

- 26 -BF - ES

Controller Logic in FSM - Finite State Machine

- 27 -BF - ES

Subcontrollers in SDF - Synchronous Data flow

- 28 -BF - ES

Visualization in GR - Graphics Domain

- 29 -BF - ES

Actor model

 Motivation

 Combining components into larger systems

 Combining different computational models

 Major points

 Continuous actors, discrete actors

 Ptolemy

 Virtual Prototyping (Matlab/Simulink/Stateflow)

- 30 -BF - ES

Actor Model of Continuous-Time Systems

A system is a function that

accepts an input signal and

yields an output signal.

The domain and range of the

system function are sets of

signals, which themselves are

functions.

Parameters may affect the

definition of the function S.

- 31 -BF - ES

Discrete Signals

Let e be a signal X

where X is any set of values.

Let

Then e is discrete iff there exists a one-to-one function

that is order-preserving, i.e., for all t1≤t2, f(t1)≤f(t2).

- 32 -BF - ES

Actor Model for State Machines

Expose inputs and outputs, enabling composition:

- 33 -BF - ES

Sensors & Actuators

- 34 -BF - ES

Embedded System Hardware

 Embedded system hardware is frequently used in a loop

(„hardware in a loop“):

actuators

- 35 -BF - ES

Sensors and Actuators

Sensors:

 Cameras

 Accelerometers

 Rate gyros

 Strain gauges

 Microphones

 Magnetometers

 Radar/Lidar

 Chemical sensors

 Pressure sensors

Actuators:
 Motor controllers

 Solenoids

 LEDs, lasers

 LCD and plasma displays

 Loudspeakers

Modeling Issues:
 Physical dynamics

 Noise

 Bias

 Sampling

 Interactions

- 36 -BF - ES

E-puck

- 37 -BF - ES

Spring-Mass-Damper Accelerometer

By Newton’s second law, F=ma.

For example, F could be the

earth’s gravitational force.

The force is balanced by the

restoring force of the spring.

- 38 -BF - ES

Spring-Mass-Damper System

x

- 39 -BF - ES

Measuring tilt

q

- 40 -BF - ES

Difficulties Using Accelerometers

 Separating tilt from acceleration

 Integrating twice to get position: Drift

 Vibration

 Nonlinearities in the spring or damper

- 41 -BF - ES

Measuring Changes in Orientation:

Gyroscopes

Optical gyros: Leverage the Sagnac effect, where a laser light is sent
around a loop in opposite directions and the interference is measured.
When the loop is rotating, the distance the light travels in one direction is
smaller than the distance in the other. This shows up as a change in the
interference.

Images from the Wikipedia Commons

- 42 -BF - ES

Inertial Navigation Systems

Combinations of:

 GPS (for initialization and periodic correction)

 Three axis gyroscope measures orientation

 Three axis accelerometer, double integrated for position
after correction for orientation

- 43 -BF - ES

Magnetometers

 A very common type is the

Hall Effect magnetometer.

 Charge particles (electrons)

flow through a conductor

(2) serving as a Hall

sensor. Magnets (3) induce

a magnetic field (4) that

causes the charged

particles to accumulate on

one side of the Hall sensor,

inducing a measurable

voltage difference from top

to bottom.

 The four drawings at the

right illustrate electron

paths under different

current and magnetic field

polarities. Image source: Wikipedia Commons

Edwin Hall discovered this effect in 1879.

- 44 -BF - ES

Charge-coupled devices (CCD) image sensors

Based on charge transfer to next pixel cell

 Mature technology

 Medium to high-end compact digital cameras

- 45 -BF - ES

CMOS image sensors

 Based on standard
production process
for CMOS chips,
allows integration
with other
components

 Lower power
consumption

 Lower cost

 low cost devices

 Automotive

 medical

http://en.wikipedia.org/wiki/Image:Aps_pd_pixel_schematic.svg
http://en.wikipedia.org/wiki/Image:Aps_pd_pixel_schematic.svg

- 46 -BF - ES

Example: Biometrical Sensors

Example: Fingerprint sensor (© Siemens, VDE):

Matrix of 256 x

256 elem.

Voltage ~

distance.

Resistance also

computed

- 47 -BF - ES

Standard layout of sensor systems

 Sensor: detects/measures entity and converts it to
electrical domain
 May entail ES-controllable actuation: e.g. charge transfer in

CCD

 Amplifier: adjusts signal to the dynamic range of the A/D
conversion
 Often dynamically adjustable gain: e.g. ISO settings at digital

cameras, input gain for microphones (sound or ultrasound),
extremely wide dynamic ranges in seismic data logging

 Sample + hold: samples signal at discrete time instants

 A/D conversion: converts samples to digital domain

Sensor Amplifier
Sample

and hold

A/D

conversion

