
- 1 -BF - ES

Embedded Systems 10

- 2 -BF - ES

REVIEW: VHDL

 HDL = hardware description language

 VHDL = VHSIC hardware description language

 VHSIC = very high speed integrated circuit

 Initiated by US Department of Defense

 1987 IEEE Standard 1076

 Reviews of standard: 1993, 2000, 2002, 2008

 Standard in (European) industry

 Extension: VHDL-AMS, includes analog modeling

- 3 -BF - ES

REVIEW: Semantics of VHDL:

Basic concepts

 „Discrete event driven simulation“

 Step-based semantics as in StateCharts:

 Computation as a series of basic steps

 Time does not necessarily proceed between two steps

 Like superstep semantics of StateCharts

 Concurrent assignments (of signals) like concurrent

assignments in StateCharts.

Steps consist of two stages.

- 4 -BF - ES

REVIEW: Overview of simulation

Initialization

End of simulation

Assign new values

to signals

Update

current time

Evaluate processes

Resume processes

- 5 -BF - ES

Transaction list and process activation list

 Transaction list

 For signal assignments

 Entries of form (s, v, t) meaning

„signal s is set to value v at time t“

 Example: (clock, ´1´, 10 ns)

 Process activation list

 For reactivating processes

 Entries of form (pi, t) meaning

„process pi resumes at time t“.

- 6 -BF - ES

Initialization

 At the beginning of initialization, the current time, tcurr,
is assumed to be 0 ns.

 An initial value is assigned to each signal.
 Taken from declaration, if specified there, e.g.,

• signal s : std_ulogic := `0`;

 Otherwise: First value in enumeration for enumeration based data types, e.g.

• signal s : std_ulogic
with
type std_ulogic is (`U`, `X`, `0`, `1`, `Z`, `W`, `L`, `H`, `-`);
initial value is `Ù`

 This value is assumed to have been the value of the signal for an infinite length
of time prior to the start of the simulation.

 Initialization phase executes each process exactly once (until it suspends).

 During execution of processes: Signal assignments are collected in
transaction list (not executed immediately!) – more details later.

 If process stops at „wait for“-statement, then update process activation list –
more details later.

 After initialization the time of the next simulation cycle (which in this case is
the first simulation cycle), tnext is calculated:
 Time tnext of the next simulation cycle = earliest of

1. time’high (end of simulation time).
2. Earliest time in transaction list (if not empty)
3. Earliest time in process activation list (if not empty).

- 7 -BF - ES

Example

architecture behaviour of example is

signal a : std_logic := `0`;

signal b : std_logic := `1`;

signal c : std_logic := `1`;

signal d : std_logic := `0`;

begin

swap1: process(a, b)

begin

a <= b after 10 ns;

b <= a after 10 ns;

end process;

swap2: process

begin

c <= d;

d <= c;

wait for 15 ns;

end process;

end architecture;

- 8 -BF - ES

Signal assignment phase – first part of step

 Each simulation cycle starts with setting the current time
to the next time at which changes must be considered:

 tcurr = tnext

 This time tnext was either computed during the
initialization or during the last execution of the simulation
cycle. Simulation terminates when the current time
would exceed its maximum, time’high.

 For all (s, v, tcurr) in transaction list:
 Remove (s, v, tcurr) from transaction list.

 s is set to v.

 For all processes pi which wait on signal s:
 Insert (pi, tcurr) in process activation list.

 Similarly, if condition of „wait until“-expression changes
value.

- 9 -BF - ES

Example

architecture behaviour of example is

signal a : std_logic := `0`;

signal b : std_logic := `1`;

signal c : std_logic := `1`;

signal d : std_logic := `0`;

begin

swap1: process(a, b)

begin

a <= b after 10 ns;

b <= a after 10 ns;

end process;

swap2: process

begin

c <= d;

d <= c;

wait for 15 ns;

end process;

end architecture;

- 10 -BF - ES

Process execution phase – second part of step (1)

 Resume all processes pi with entries (pi, tcurr)
in process activation list.

 Execute all activated processes „in parallel“ (in fact: in arbitrary
order).

 Signal assignments
 are collected in transaction list (not executed immediately!).

 Examples:

• s <= a and b;

– Let v be the conjunction of current value of a and current value
of b.

– Insert (s, v, tcurr) in transaction list.

• s <= ´1´ after 10 ns;

– Insert (s, ´1´, tcurr + 10 ns) into transaction list.

 Processes are executed until wait statement is encountered.

 If process pi stops at „wait for“-statement, then update process
activation list:
 Example:

• pi stops at „wait for 20 ns;“

• Insert (pi, tcurr + 20 ns) into process activation list

- 11 -BF - ES

Process execution phase – second part of step (2)

If some process reaches last statement and
 does not have a sensitivity list and

 last statement is not a wait statement,

then it continues with first statement and runs until wait
statement is reached.

 When all processes have stopped, the time of the next
simulation cycle tnext is calculated:
 Time tnext of the next simulation cycle = earliest of

1.time’high (end of simulation time).
2.Earliest time in transaction list (if not empty)
3.Earliest time in process activation list (if not empty).

 Stop if tnext = time’high and transaction list and process
activation list are empty.

- 12 -BF - ES

Example

architecture behaviour of example is

signal a : std_logic := `0`;

signal b : std_logic := `1`;

signal c : std_logic := `1`;

signal d : std_logic := `0`;

begin

swap1: process(a, b)

begin

a <= b after 10 ns;

b <= a after 10 ns;

end process;

swap2: process

begin

c <= d;

d <= c;

wait for 15 ns;

end process;

end architecture;

- 13 -BF - ES

Delta delay

 As for StateCharts (super step semantics!) time does not

necessarily proceed between two steps.

 Several (potentially an infinite number of) steps can take place at

the same time tcurr.

 Notion: Signal assignments which take place at the same time in

two consecutive steps are separated by one „delta delay“.

- 14 -BF - ES

Delta delay -

Simulation of an RS-Flipflop

entitiy RS_Flipflop is
port (R, S : in std_logic;

Q, nQ : inout std_logic);
end RS_FlipFlop;

architecture one of RS_Flipflop is
begin
process (R,S,Q,nQ)
begin

Q := R nor nQ;
nQ := S nor Q;

end process;
end one;

0ns 0ns+ 0ns+2

R 1 1 1

S 0 0 0

Q 1 0 0

nQ 0 0 1

0001

1100

0000

0111

1st

2nd

 cycles reflect the fact that no

real gate comes with zero delay.

- 15 -BF - ES

„Write-write-conflicts“

 Case 1:

Write-write-conflicts are restricted to

the same process

(i.e. they occur inside the same

process)

 Then the second signal assignment

overwrites the first one.

 This is the only case of „non-concurrency“

of signal assignments

 Note that writing to different signals

occurs concurrently, however!

signal s : bit;

…

p : process

begin

…

s <= `0`;

…

s <= `1`;

wait for 5 ns;

end process p;

- 16 -BF - ES

„Write-write-conflicts“

 Case 2:

Write-write-conflicts between different

processes

 If there is no „resolution function“ for

the data type dt, then writing the same

signal by different processes in the same

step is forbidden.

 If there is a resolution function, then the

resolution function computes the value of s

at time tcurr:

• Value for s in the current step is computed

for each process separately,

• resolution function is used to compute final

result.

signal s : dt;

…

s<= v1;

…

p : process

begin

…

s <= v2;

…

end process p;

q : process

begin

…

s <= v3;

…

end process q;

- 17 -BF - ES

Abstraction of electrical signals

 Complete analog simulation at the circuit level would be

time-consuming

We try to use digital values and DE simulation as long as possible

However, using just 2 digital values would be too restrictive

 We introduce the distinction between:

 the logic level (as an abstraction of the voltage) and

 the strength (as an abstraction of the current drive capability) of a

signal.

 The two are encoded in logic values.

- 18 -BF - ES

1 signal strength

 Logic values '0' and '1'.

 Both of the same strength.

 Encoding false and true, respectively.

- 19 -BF - ES

2 signal strengths

 Many subcircuits

can effectively

disconnect

themselves from

the rest of the

circuit (they

provide “high

impedance“ values

to the rest of the

circuit).

 Example:

subcircuits with

open collector

- 20 -BF - ES

TriState circuits

 We introduce signal value 'Z', meaning “high impedance“

- 21 -BF - ES

2 signal strengths (cont’ed)

 We introduce an operation #, which generates the effective

signal value whenever two signals are connected by a wire.

 #('0','Z')='0'; #('1','Z')='1'; '0' and '1' are “stronger“ than 'Z'

1 strength

According to the partial order in

the diagram, # returns the

smallest element at least as large

as the two arguments (“Sup”).

In order to define #('0','1'), we

introduce 'X', denoting an

undefined signal level.

'X' has the same strength as '0'

and '1'.
Hasse diagram

- 22 -BF - ES

Application example

signal value on bus = #(value from left subcircuit, value from right subcircuit)

#('Z', value from right subcircuit) = value from right subcircuit

“as if left circuit were not there“.

- 23 -BF - ES

3 signal strengths

Depletion transistor contributes a weak value to be

considered in the #-operation for signal A

 Introduction of 'H',

denoting a weak signal of the same level as '1'.

#('H', '0')='0'; #('H','Z') = 'H'

- 24 -BF - ES

3 signal strengths

 There may also be weak signals

of the same level as '0'

 Introduction of 'L', denoting a

weak signal of the same level as

'0': #('L', '1')=‘1'; #('L','Z') = 'L';

 Introduction of 'W', denoting a

weak signal of undefined level 'X':

#('L', 'H')='W'; #('L','W') = 'W';

 # reflected by the partial order

shown.

- 25 -BF - ES

4 signal strengths (1)

 pre-charging:

Pre-charged '1'-levels weaker than any of the values

considered so far, except 'Z'.

 Introduction of 'h', denoting a very weak signal of the

same level as '1'.

#('h', '0')='0'; #('h','Z') = 'h'

- 26 -BF - ES

4 signal strengths (2)

 There may also be weak signals

of the same level as '0'

 Introduction of 'l', denoting a

very weak signal of the same level

as '0': #('l', '0')='0'; #('l,'Z') = 'l';

 Introduction of 'w', denoting a

very weak signal of the same level

as 'W': #('l', 'h')='w'; #('h','w') =

'w'; ...

 # reflected by the partial order

shown.

- 27 -BF - ES

IEEE 1164

 VHDL allows user-defined value sets.

 Each model could use different value sets (unpractical)

 Definition of standard value set according to standard

IEEE 1164:

{'0', '1', 'Z', 'X', 'H', 'L', 'W', 'U', '-'}

 First seven values as discussed previously.

 'U': un-initialized signal; used by simulator to initialize all

not explicitly initialized signals:

type std_ulogic is (`U`, `X`, `0`, `1`, `Z`, `W`, `L`, `H`, `-`);

 '-': is used to specify don’t cares:

 Example: if a /= ‘1’ or b/=‘1’ then f <= a exor b; else f <= ‘-’;

 ‘-’ may be replaced by arbitrary value by synthesis tools.

- 28 -BF - ES

Outputs tied together

In hardware, connected outputs can be used:

bus
'Z' 'Z' 'h''0'

resolved signal

unresolved

signals

Modeling in VHDL: resolution functions

type std_ulogic is ('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', '-');

subtype std_logic is resolved std_ulogic;

outputs

- 29 -BF - ES

Resolution function for IEEE 1164

type std_ulogic_vector is array(natural range<>)of std_ulogic;

function resolved (s:std_ulogic_vector) return std_logic is

variable result: std_ulogic:='Z'; --weakest value is default

begin

if (s'length=1) then return s(s'low) --no resolution

else for i in s'range loop

result:=resolution_table(result,s(i))

end loop

end if;

return result;

end resolved;

- 30 -BF - ES

Resolution function for IEEE 1164

constant resolution_table : stdlogic_table := (

--U X 0 1 Z W L H –

('U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', 'U'), --| U |

('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X'), --| X |

('U', 'X', '0', 'X', '0', '0', '0', '0', 'X'), --| 0 |

('U', 'X', 'X', '1', '1', '1', '1', '1', 'X'), --| 1 |

('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', 'X'), --| Z |

('U', 'X', '0', '1', 'W', 'W', 'W', 'H', 'X'), --| W |

('U', 'X', '0', '1', 'L', 'W', 'L', 'W', 'X'), --| L |

('U', 'X', '0', '1', 'H', 'W', 'W', 'H', 'X'), --| H |

('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X') --| - |

);

- 31 -BF - ES

Inertial and transport delay model

 Signal assignment:

 signal_assignment ::=
target <= [delay_mechanism] waveform_element

{ , waveform_element }
 waveform_element ::=

value_expression [after time_expression]

 delay_mechanism ::=
transport | [reject time_expression] inertial

 Example:
 Inpsig <= ´0´, ´1´after 5 ns, ´0´ after 10 ns, ´1´ after 20 ns;

- 32 -BF - ES

Inertial and transport delay model

 Example for signal assignment:

outp <= not inp after 10 ns;

outp??

inp

5 10 15 20 25 30 35

outp??

- 33 -BF - ES

Two delay models in VHDL:

 Inertial delay („träge Verzögerung“)

 Transport delay („nichtträge Verzögerung“)

Inverter
Input Output

Inertial and transport delay model

 Inertial delay model is motivated by the fact that physical

gates absorb short pulses (spikes) at their inputs (due to

internal capacities)

- 34 -BF - ES

 … is the default model

 Absorbs pulses at the

inputs which are shorter

than the delay specified

for the gate / operation

Inverter
Input Output

-- INERTIAL is the default

Output <= NOT input AFTER 10 ns;

Output

Input

5 10 15 20 25 30 35

Inertial delay model

- 35 -BF - ES

Inverter
Input Output

-- TRANSPORT must be specified

Output <= TRANSPORT NOT input AFTER 10 ns;

Output

Input

5 10 15 20 25 30 35

Transport delay model

 Transmits all pulses at the

inputs ideally

- 36 -BF - ES

entity DELAY is

end DELAY;

architecture RTL of DELAY is

signal A, B, X, Y: bit;

begin

p0: process (A, B)

begin

Y <= A nand B after 10 ns;

X <= transport A nand B after 10 ns;

end process;

p1: process

begin

A <= '0', '1' after 20 ns, '0'

after 40 ns, '1' after 60 ns;

B <= '0', '1' after 30 ns, '0'

after 35 ns, '1' after 50 ns;

wait for 80 ns;

end process

end RTL;

0 100 200

A

B

X

Y

[ns]

Inertial and transport delay model

- 37 -BF - ES

Semantics of transport delay model

Signal assignments change transaction list.

 Before transaction (s, t1, v1) is inserted into transaction

list, all transactions in the transaction list (s, t2, v2)

with t2 t1 are removed from transaction list.

- 38 -BF - ES

Example for transport delay model

 Transaction list:

 At 5ns:

(outp, 25ns, `0`)

 At 10 ns:

(outp, 22.5ns, `1`), (outp, 25ns, `0`)

Remove (outp, 25ns, `0`)!

 (outp, 22.5ns, `1`)

Inverter
inp outp

inv : process(inp)

begin

if inp=`1` then

outp <= transport `0` after 20 ns;

elsif inp=`0` then

outp <= transport `1` after 12.5 ns

end if;

end process inv;

outp

inp

5 10 15 20 25 30 35

- 39 -BF - ES

Semantics of inertial delay model

 Semantics for more general version of inertial delay

statement:

 Inertial delay absorbs pulses at the inputs which are shorter than

the delay specified for the gate / operation.

 Key word reject permits absorbing only pulses which are shorter

than specified delay:

• Example:

– outp <= reject 3 ns inertial not inp after 10 ns;

– Only pulses smaller than 3 ns are absorbed.

– outp <= reject 10 ns inertial not inp after 10 ns;

and

outp <= not inp after 10 ns;

are equivalent.

- 40 -BF - ES

Semantics of inertial delay model

 Rule 1 as for transport delay model:
Before transaction (s, t1, v1) is inserted into transaction list, all
transactions in the transaction list (s, t2, v2) with t2 t1 are removed
from transaction list.

 Rule 2 removes also some transactions with times < t1:

 Suppose the time limit for reject is rt.

 Transactions for signal s with time stamp in the intervall (t1 – rt, t1) are
removed.

 Exception:
If there is in (t1 – rt, t1) a subsequence of transactions for s immediately
before (s, t1, v1) which also assign value v1 to s, then these transactions
are preserved.

