
Embedded Systems

- 2 -BF - ES

Embedded Systems

 Ruzica Piskac (ruzica.piskac@yale.edu)

 Leander Tentrup (tentrup@cs.uni-saarland.de)

 Michael Gerke (gerke@cs.uni-saarland.de)

 Felix Klein (klein@cs.uni-saarland.de)

 Stammvorlesung 9 CP

 Lectures:

 Tuesdays, 16:15-18:00

 Thursdays, 10:15-12:00

mailto:ruzica.piskac@yale.edu
mailto:tentrup@cs.uni-saarland.de
mailto:gerke@cs.uni-saarland.de
mailto:klein@cs.uni-saarland.de

- 3 -BF - ES

Textbooks

 Edward A. Lee and Sanjit A. Seshia,

Introduction to Embedded Systems,

A Cyber-Physical Approach, 2011.

Available online from leeseshia.org

 Peter Marwedel,

Embedded System Design.

Springer, Berlin; 2nd Edition, 2011.

 Giorgio C. Buttazzo

Hard Real-Time Computing Systems:

Predictable Scheduling Algorithms and

Applications, Springer, 2011

- 4 -BF - ES

Problem Sets

 Website:

http://react.cs.uni-sb.de/teaching/embedded-systems-14/

 Problem sets released every Tuesday (first on May 06)

 Due next Tuesday afternoon before the lecture (you can

just hand it in before the lecture), work in groups of three

students

 Weekly discussion sessions (15 minutes each)

 Individual feedback:

mandatory discussion slot per group

 Format: 15 minutes, slots on Thursday and Friday

 No grading / solutions only presented in tutorials

http://react.cs.uni-sb.de/teaching/embedded-systems-12/

- 5 -BF - ES

Exam Policy

 Qualification: Miss at most two discussion slots & hand
in solutions to all problem sets, have to complete the
projects

 Project: more details during next lectures

 Three exams: Midterm/End-of-Term Exam/End-of-
Semester Exam

 Need to pass 2 out of 3 to pass the course

 Grading: average of best 2

- 6 -BF - ES

Embedded Systems

Computers whose job is not

primarily information

processing, but rather is

interacting with physical

processes.

A broader view is that of cyber-

physical systems (CPS)

Estimates for number of embedded systems

in current use: >1010

[Rammig 2000, Motorola 2001]

- 7 -BF - ES

 Embedded Systems: Information processing systems

embedded into enclosing products.

Examples: Systems with real-time constraints and

efficiency requirements like automobiles,

telecommunication or fabrication equipment

 Cyber-Physical Systems: Integrations of computation

and physical processes.

Example: Networked systems of embedded computers

linking together a range of devices and sensors for

information sharing

Key Terms

- 8 -BF - ES

400 horses

100 microprocessors

- 9 -BF - ES Stanford, IEEE Spectrum

- 10 -BF - ES

- 11 -BF - ES

Example: Toyota autonomous vehicle technology

roadmap, c. 2007

Source: Toyota Web site

- 12 -BF - ES $4 billion development effortPATH project

- 13 -BF - ES
Thanks to PATH publication unit

https://www.youtube.com/

watch?v=PDPuNlWXtlI

mailto:https://www.youtube.com/watch?v=PDPuNlWXtlI

- 14 -BF - ES Youtube: Manufacturing Robots Automated Assembly

- 15 -BF - ES

Printing Press

• High-speed, high precision
• Speed: 1 inch/ms

• Precision: 0.01 inch

-> Time accuracy: 10us

• Open standards (Ethernet)
• Synchronous, Time-Triggered

• IEEE 1588 time-sync protocol

• Application aspects
• local (control)

• distributed (coordination)

• global (modes)
Bosch-Rexroth

- 16 -BF - ES

http://offsetpressman.blogspot.de/2011/03/

how-flying-paster-works.html

- 17 -BF - ES

The DLR heart

http://www.dualis-medtech.com

- 18 -BF - ES

Mars, July 4, 1997

- 19 -BF - ES

The MARS Pathfinder problem

“But a few days into the mission, not long

after Pathfinder started gathering

meteorological data, the spacecraft

began experiencing total system resets,

each resulting in losses of data. The

press reported these failures in terms

such as "software glitches" and "the

computer was trying to do too many

things at once".” …

- 20 -BF - ES

The MARS Pathfinder problem

 System overview:
 Information Bus (IB):

• Buffer for exchanging data between different tasks

• Shared resource of two tasks M and B

 Three tasks:

• Meteorological data gathering task (M):

– collects meteorological data

– reserves IB, writes data to IB, releases IB

– infrequent task, low priority

• Bus management (B):

– data transport from IB to destination

– reserves IB, data transport, releases IB

– frequent task, high priority

- 21 -BF - ES

The MARS Pathfinder problem

 Three tasks:

• ...

• “Communication task” (C):

– medium priority, does not use IB

 Scheduling with fixed priorities.

 Watch dog timer (W):

• Execution of B as indicator of system hang-up

• If B is not activated for certain amount of time: Reset the

system

- 22 -BF - ES

The MARS Pathfinder problem

(see http://research.microsoft.com/~mbj/Mars_Pathfinder/)

“Most of the time this combination worked fine.

However, very infrequently it was possible for an interrupt to occur that
caused the (medium priority) communications task to be scheduled
during the short interval while the (high priority) information bus thread
was blocked waiting for the (low priority) meteorological data thread. In
this case, the long-running communications task, having higher priority
than the meteorological task, would prevent it from running,
consequently preventing the blocked information bus task from running.

After some time had passed, a watchdog timer would go off, notice that
the data bus task had not been executed for some time, conclude that
something had gone drastically wrong, and initiate a total system reset.

This scenario is a classic case of priority inversion.”

http://research.microsoft.com/~mbj/Mars_Pathfinder/

- 23 -BF - ES

Priority inversion

normal execution critical region

priority(J1) > priority(J2) > priority(J3)

J1

J2

J1 blocked

J3

B

C

M

Reset by watchdog timer

- 24 -BF - ES

Classic solution: Priority inheritance

normal execution critical region

priority(J1) > priority(J2) > priority(J3)

J1

J2

J1 blocked

J3

B

C

M

NO reset by watchdog timer

J3 inherits priority of J1

- 25 -BF - ES

Priority inversion on Mars

 Priority inheritance also solved the Mars Pathfinder

problem:

 the VxWorks operating system used in the pathfinder

implements a flag for the calls to mutual exclusion primitives.

 This flag allows priority inheritance to be set to “on”.

 When the software was shipped, it was set to “off”.

The problem on Mars was corrected

by using the debugging facilities of

VxWorks to change the flag to “on”,

while the Pathfinder was already on

the Mars [Jones, 1997].

- 26 -BF - ES

Embedded Systems

Embedded system = engineering artifact involving computation

that is subject to physical constraints

Constraint #1: Reaction to the physical environment

Reaction constraints: deadlines, throughput, jitter

Constraint #2: Execution on a physical platform

Execution constraints: Bounds on available processor speeds, power,

hardware failure rates

Challenge: Gain control over the interplay of computation with

reaction and execution constraints, so as to meet given

requirements.

- 27 -BF - ES

Characteristics of Embedded Systems

Must be efficient:

• Energy efficient

• Code-size efficient (especially for systems on a chip)

• Run-time efficient

• Weight efficient

• Cost efficient

Dedicated towards a certain application

Knowledge about behavior at design time can be used to

minimize resources and to maximize robustness

Dedicated user interface

(no mouse, keyboard and screen)

- 28 -BF - ES

Characteristics of Embedded Systems

Many ES must meet real-time constraints

A real-time system must react to stimuli from the controlled

object (or the operator) within the time interval dictated by the

environment.

For real-time systems, right answers arriving too late are

wrong.

„A real-time constraint is called hard, if not meeting that

constraint could result in a catastrophe“ [Kopetz, 1997].

All other time-constraints are called soft.

- 29 -BF - ES

Characteristics of Embedded Systems

Frequently connected to physical environment through

sensors and actuators.

Typically Embedded Systems are

 Hybrid systems (analog + digital parts)

 Reactive systems

„A reactive system is one which is in continual interaction

with is environment and executes at a pace determined by

that environment“ [Bergé, 1995]

Behavior depends on input and current state.

- 30 -BF - ES

Course Topics

 Model-Based Design

 Implementation based on a mathematical model

 Embedded Systems Hardware

 Sensors, processing units, communication

 Embedded Systems Software

 Scheduling

 Hardware-Software Codesign

 methods for the optimal division of labor

 System Analysis

 Testing, reliability, worst-case execution time, etc.

- 31 -BF - ES

Modeling, Design, Analysis

Modeling is the process of

gaining a deeper understanding

of a system through imitation.

Models specify what a system does.

Design is the structured creation of

artifacts. It specifies how a system does

what it does. This includes optimization.

Analysis is the process of gaining a deeper understanding of

a system through dissection.

It specifies why a system does what it does

(or fails to do what a model says it should do).

- 32 -BF - ES

What is Modeling?

 Developing insight about a system, process, or artifact

through imitation.

 A model is the artifact that imitates the system, process,

or artifact of interest.

 A mathematical model is a model in the form of a set of

definitions and mathematical formulas.

- 33 -BF - ES

What is Model-Based Design?

1. Create a mathematical model of all the parts of the
embedded system

 Physical world

 Control system

 Software environment

 Hardware platform

 Network

 Sensors and actuators

2. Construct the implementation from the model

 Construction may be automated, like a compiler

 Some parts are automatically constructed

- 34 -BF - ES

Modeling Techniques in this Course

Models that are abstractions of system dynamics

(how things change over time)

Examples:

 Modeling physical phenomena – ODEs

 Modeling modal behavior – FSMs, hybrid automata

 Real-time constraints – timed automata

 Hierarchy – StateCharts

 Concurrency – Petri Nets

 Modeling networks – RTC

- 35 -BF - ES

An Example: Modeling Helicopter Dynamics

- 36 -BF - ES

Modeling Physical Motion

 Six degrees of freedom:

 Position: x, y, z

 Orientation: pitch, yaw, roll

Lee/Seshia, Chapter 2

- 37 -BF - ES

Notation

- 38 -BF - ES

Notation

- 39 -BF - ES

Newton’s Second Law

- 40 -BF - ES

Orientation

- 41 -BF - ES

Torque

- 42 -BF - ES

Feedback Control Problem

A helicopter without a tail rotor, like the one

below, will spin uncontrollably due to the

torque induced by friction in the rotor shaft.

Control system problem:

Apply torque using the tail

rotor to counterbalance

the torque of the top rotor.

- 43 -BF - ES

Actor Model of Systems

A system is a function that

accepts an input signal and

yields an output signal.

The domain and range of the

system function are sets of

signals, which themselves are

functions.

Parameters may affect the

definition of the function S.

- 44 -BF - ES

Actor model of the helicopter

Input is the net torque of the

tail rotor and the top rotor.

Output is the angular velocity

around the y axis.

Parameters of the

model are shown in

the box. The input

and output relation is

given by the equation

to the right.

- 45 -BF - ES

Composition of actor models

- 46 -BF - ES

Actor models with multiple inputs

- 47 -BF - ES

Discrete Systems

Example: count the number of cars that enter and leave a

parking garage:

Pure signal:

Discrete actor:

Lee/Seshia, Chapter 3

- 48 -BF - ES

Reaction

- 49 -BF - ES

Input and Output Valuations at a Reaction

- 50 -BF - ES

State Space

- 51 -BF - ES

Garage Counter Finite State Machine (FSM)

in Pictures

- 52 -BF - ES

Garage Counter Mathematical Model

The picture

above defines

the update

function.

- 53 -BF - ES

FSM Notation

transition

self loop

state

initial state

- 54 -BF - ES

Examples of Guards for Pure Signals

- 55 -BF - ES

Examples of Guards for Signals with Numerical

Values

- 56 -BF - ES

Example: Thermostat

- 57 -BF - ES

More Notation: Default Transitions

A default transition is enabled if no non-default transition is

enabled and it either has no guard or the guard evaluates to

true.

- 58 -BF - ES

Extended State Machines

Extended state machines augment the FSM model with

variables that may be read or written. E.g.:

Question: What is the size of the state space?

- 59 -BF - ES

General Notation for Extended State Machines

We make explicit declarations of variables, inputs, and outputs

to help distinguish the three.

- 60 -BF - ES

Extended state machine model of a traffic light

controller at a pedestrian crossing:

 This model assumes one reaction per second

 (a time-triggered model)

Default transition

with implicit

guard / action

(true / none)

