
1

 - 1 - BF - ES

Embedded Systems 12

 - 2 - BF - ES

REVIEW: Embedded System Hardware

Embedded system hardware is frequently used in a loop

(„hardware in a loop“):

actuators

2

 - 3 - BF - ES

REVIEW: Standard layout of sensor systems

 Sensor: detects/measures entity and converts it to
electrical domain
 May entail ES-controllable actuation: e.g. charge transfer in

CCD

 Amplifier: adjusts signal to the dynamic range of the A/D
conversion
 Often dynamically adjustable gain: e.g. ISO settings at digital

cameras, input gain for microphones (sound or ultrasound),
extremely wide dynamic ranges in seismic data logging

 Sample + hold: samples signal at discrete time instants

 A/D conversion: converts samples to digital domain

Sensor Amplifier
Sample

and hold

A/D

conversion

 - 4 - BF - ES

Discretization of time

Vx is a sequence of values or a mapping ℤ ℝ

Discrete time: sample and hold-devices.

Ideally: width of clock pulse -> 0

Ve is a mapping ℝ ℝ

3

 - 5 - BF - ES

Sample and Hold

Input

Output

Clock

 - 6 - BF - ES

Discretization of values: A/D-converters

1. Flash A/D converter (1)

 Basic element: analog comparator

 Output = ´1´ if voltage at input + exceeds that at input -.

 Output = ´0´ if voltage at input - exceeds that at input +.

 Idea:

 Generate n different voltages by voltage divider (resistors),

e.g. Vref, ¾ Vref, ½ Vref, ¼ Vref.

 Use n comparators for parallel comparison of input voltage Vx to these

voltages.

 Encoder to compute digital output.

4

 - 7 - BF - ES

Discretization of values: A/D-converters

1. Flash A/D converter (2)

Parallel comparison with

reference voltage

Applications: e.g. in video

processing

 - 8 - BF - ES

Discretization of values

2. Successive approximation

Key idea: binary search:

 Set MSB='1'

 if too large: reset MSB

 Set MSB-1='1'

 if too large: reset MSB-1

5

 - 9 - BF - ES

Successive approximation (2)

1100

1000

1010

1011

t

V

Vx

V-

 - 10 - BF - ES

Digital-to-Analog (D/A) Converters

 Convert digital value to conductivity proportional to the

digital value

x3

x2

x1

x0

R

2 R

4 R

8 R I0

I1

I2

I3

6

 - 11 - BF - ES

Operational amplifier

• Use operational amplifier to convert conductivity to

voltage: V = - Vref R2 / R1

-

+

R1

R2

Vref V

I

 - 12 - BF - ES

Digital-to-Analog (D/A) Converters (3)

-

+

R2

Vref
V

x3

x2

x1

x0

R

2 R

4 R

8 R

7

 - 13 - BF - ES

Design Issues with Sensors

 Calibration
 Relating measurements to the physical phenomenon

 Can dramatically increase manufacturing costs

 Nonlinearity
 Measurements may not be proportional to physical phenomenon

 Correction may be required

 Feedback can be used to keep operating point in the linear
region

 Sampling
 Aliasing

 Missed events

 Noise
 Analog signal conditioning

 Digital filtering

 Introduces latency

 - 14 - BF - ES

Aliasing

 Periods of p=8,4,1

 Indistinguishable if sampled at integer times, ps=1

1

 2
sin5.0

4

 2
sin5.0

8

 2
sin)(

4

ttt
te

4

 2
sin5.0

8

 2
sin)(

3

tt
te

8

 - 15 - BF - ES

Aliasing

Nyquist criterion (sampling theory):

Aliasing can be avoided if we restrict the frequencies of

the incoming signal to less than half of the sampling

rate.

ps < ½ pN where pN is the period of the “fastest” sine wave

or fs > 2 fN where fN is the frequency of the “fastest” sine wave

fN is called the Nyquist frequency, fs is the sampling rate.

See e.g. [Oppenheim/Schafer, 2009]

 - 16 - BF - ES

Graphics

(Wikimedia Commons)

9

 - 17 - BF - ES

Anti-aliasing filter

A filter is needed to remove high frequencies

fs

)(

)(

te

tg
Ideal filter

fs /2

e4(t) changed into e3(t)

Realizable

filter

 - 18 - BF - ES

Possible to reconstruct input signal?

 Assuming Nyquist criterion met

 Let {ts}, s = ...,−1,0,1,2, ... be times at which we sample g(t)

 Assume a constant sampling rate of 1/ps (∀s: ps = ts+1−ts).

 According to sampling theory, we can approximate the input signal

using the Shannon-Whittaker interpolation:

[Oppenheim, Schafer, 2009]

Weighting factor

for influence of

y(ts) at time t

10

 - 19 - BF - ES

Weighting factor for influence of y(ts)

at time t

No influence at ts+n

 - 20 - BF - ES

Contributions from the various sampling

instances

11

 - 21 - BF - ES

(Attempted) reconstruction of input signal

*

* Assuming 0-

order hold

 - 22 - BF - ES

How to compute the sinc() function?

 Filter theory: The required interpolation is performed by an

ideal low-pass filter (sinc is the Fourier transform of the low-

pass filter transfer function)

fs

)(

)(

ty

tz

fs /2

Filter removes high frequencies present in y(t)

12

 - 23 - BF - ES

How precisely are we reconstructing the input?

 Sampling theory:

• Reconstruction using sinc () is precise

 However, it may be impossible to really compute z(t)

 - 24 - BF - ES

Limitations

 Actual filters do not compute sinc()

In practice, filters are used as an approximation.

Computing good filters is an art itself!

 All samples must be known to reconstruct e(t) or g(t).

 Waiting indefinitely before we can generate output!

In practice, only a finite set of samples is available.

 Actual signals are never perfectly bandwidth limited.

 Quantization noise cannot be removed.

13

 - 25 - BF - ES

Actuators and output

 Huge variety of actuators and outputs

 Two base types:

• analogue drive
 (requires D/A conversion, unless on/off sufficient)

• CRTs, speakers, electrical motors with collector

• electromagnetic (e.g., coils) or electrostatic drives

• piezo drives

• digital drive (requires amplification only)

• LEDs

• stepper motors

• relais, electromagnetic valve (if actuation slope irrelevant)

 - 26 - BF - ES

Micromotors

(© MCNC) (TU Berlin)

14

 - 27 - BF - ES

Interfaces

 - 28 - BF - ES

Interfaces

 Pulse width modulation (PWM)

 General-Purpose Digital I/O (GPIO)

 Parallel

 Multiple data lines transmitting data

 Ex: PCI, ATA, CF cards, Bus

 Serial

 Single data line transmitting data

 Ex: USB, SATA, SD cards,

15

 - 29 - BF - ES

Example Using a Serial Interface

In an Atmel AVR 8-bit microcontroller, to send a byte over

a serial port, the following C code will do:

 while(!(UCSR0A & 0x20));

 UDR0 = x;

• x is a variable of type uint8.

• UCSR0A and UDR0 are variables defined in header.

• They refer to memory-mapped registers.

 - 30 - BF - ES

Send a Sequence of Bytes

for(i = 0; i < 8; i++) {

 while(!(UCSR0A & 0x20));

 UDR0 = x[i];

}

How long will this take to execute? Assume:

• 57600 baud serial speed.

• 8/57600 =139 microseconds.

• Processor operates at 18 MHz.

Each while loop will consume 2500 cycles.

16

 - 31 - BF - ES

Input Mechanisms in Software

 Polling

 Main loop checks each

I/O device periodically.

 If input is ready,

processor initiates

communication.

 Interrupts

 External hardware alerts

the processor that input is

ready.

 Processor suspends what

it is doing, invokes an

interrupt service routine

(ISR).
Processor Setup Code

Processor checks I/O control register

for status of peripheral 1
Processor services I/O 1

Processor checks I/O control register

for status of peripheral 2

Processor checks I/O control register

for status of peripheral 3

Processor services I/O 2

Processor services I/O 3

Ready

Ready

Ready

Not Ready

Not Ready

Not Ready

Processor Setup Code

Register the Interrupt Service Routine

Processor executes task code Run Interrupt Service Routine

Interrupt!

Context switch

Resume

 - 32 - BF - ES

Timed Interrupt

Timer

Update Tick / Sample

When timer expires,

interrupt processor

Reset timer

Processor jumps to ISR

Resumes

Processor Setup

Register Interrupt Service Routine

Initialize Timer

Execute Task Code

17

 - 33 - BF - ES

volatile uint timer_count = 0;

void ISR(void) {

 if(timer_count != 0) {

 timer_count--;

 }

}

int main(void) {

 // initialization code

 SysTickIntRegister(&ISR);

 ... // other init

 timer_count = 2000;

 while(timer_count != 0) {

 ... code to run for 2 seconds

 }

}

Example:

Do something for 2 seconds then stop

volatile: C keyword to tell the

compiler that this variable may

change at any time, not (entirely)

under the control of this program.

static variable: declared outside

main() puts them in statically

allocated memory (not on the

stack)

Interrupt service routine

Registering the ISR to be invoked

on every SysTick interrupt

 - 34 - BF - ES

Example

18

 - 35 - BF - ES

Embedded System Hardware

Embedded system hardware is frequently used

in a loop (“hardware in a loop“):

 cyber-physical systems

 - 36 - BF - ES

Microcontrollers

 Integrate several components of a microprocessor

system onto one chip
CPU, Memory, Timer, IO

 Low cost,

small packaging

 Easy integration

with circuits

 Single-purpose

PIC16C8X

19

 - 37 - BF - ES

Application Specific Circuits (ASICS)

or Full Custom Circuits

 Approach suffers from

 long design times,

 lack of flexibility

(changing standards) and

 high costs

(e.g. Mill. $ mask costs).

 Custom-designed circuits

necessary

 if ultimate speed or

 energy efficiency is the goal and

 large numbers can be sold.

 - 38 - BF - ES

Energy

© Hugo De Man,

IMEC, Philips, 2007

20

 - 39 - BF - ES

Low Power vs. Low Energy

Consumption

 Minimizing power consumption important for

• the design of the power supply

• the design of voltage regulators

• the dimensioning of interconnect

• short term cooling

 Minimizing energy consumption important due to

• restricted availability of energy (mobile systems)

– limited battery capacities (only slowly improving)

– very high costs of energy (solar panels, in space)

• cooling

– high costs

– limited space

• dependability

• long lifetimes, low temperatures

 - 40 - BF - ES

Dynamic power management (DPM)

 RUN: operational

 IDLE: a SW routine

may stop the CPU

when not in use, while

monitoring interrupts

 SLEEP: Shutdown of

on-chip activity

RUN

SLEEP IDLE

400mW

160µW 50mW

90µs

10µs

10µs
160ms

Example: STRONGARM SA1100

Power fault

signal

21

 - 41 - BF - ES

Fundamentals of dynamic voltage

scaling (DVS)

Power consumption of CMOS

circuits (ignoring leakage):

frequencyclock :

tagesupply vol:

ecapacitanc load:

activity switching:

with
2

f

V

C

fVCP

dd

L

ddL

) than

voltage threshhold

 with

ddt

t

tdd

dd

L

VV

V

VV

V
Ck

(

:

2

Delay for CMOS circuits:

[Courtesy,

Yasuura, 2000]

 - 42 - BF - ES

Variable-voltage/frequency example:

 INTEL Xscale

F
ro

m
 I

n
te

l’s
 W

e
b

 S
it
e

OS should

schedule

distribution

of the

energy

budget.

22

 - 43 - BF - ES

Low voltage, parallel operation more efficient

than high voltage, sequential operation

Basic equations

Power: P ~ VDD² ,

Maximum clock frequency: f ~ VDD ,

Energy to run a program: E = P t, with: t = runtime

Time to run a program: t ~ 1/f

Changes due to parallel processing, with operations per clock:

Clock frequency reduced to: f ’ = f / ,

Voltage can be reduced to: VDD’ =VDD / ,

Power for parallel processing: P° = P / ² per operation,

Power for operations per clock: P’ = P° = P / ,

Time to run a program is still: t’ = t,

Energy required to run program: E’ = P’ t = E /

Argument in favour of voltage scaling,

VLIW processors, and multi-cores

Rough

approxi-

mations!

 - 44 - BF - ES

Application: VLIW processing and vol-tage

scaling in the Crusoe processor

 VDD: 32 levels (1.1V - 1.6V)

 Clock: 200MHz - 700MHz in increments of 33MHz

Scaling is triggered when CPU load change is detected

by software (~1/2 ms).

 More load: Increase of supply voltage (~20 ms/step),

followed by scaling clock frequency

 Less load: reduction of clock frequency, followed by

reduction of supply voltage

Worst case (1.1V to 1.6V VDD, 200MHz to 700MHz) takes

280 ms

23

 - 45 - BF - ES

Result (as published by transmeta)

[www.transmeta.com]

Pentium Crusoe

Running the same multimedia application.

 - 46 - BF - ES

Digital Signal Processing (DSP)

Example: Filtering

Signal at t=ts (sampling points)

24

 - 47 - BF - ES

Filtering in digital signal processing

outer loop over

sampling times ts

{ MR:=0; A1:=1; A2:=s-1;

 MX:=w[s]; MY:=a[0];

 for (k=0; k <= (n−1); k++)

 { MR:=MR + MX * MY;

 MX:=w[A2]; MY:=a[A1];
 A1++; A2--;

 }

 x[s]:=MR;

 }

ADSP 2100

 - 48 - BF - ES

DSP-Processors: multiply/accumulate (MAC)

and zero-overhead loop (ZOL) instructions

MR:=0; A1:=1; A2:=n-2; MX:=x[n-1]; MY:=a[0];

for (j:=1 to n)

 {MR:=MR+MX*MY; MY:=a[A1]; MX:=x[A2]; A1++; A2--}

Multiply/accumulate (MAC) instruction Zero-overhead loop (ZOL)

instruction preceding MAC

instruction.

Loop testing done in parallel to

MAC operations.

25

 - 49 - BF - ES

Heterogeneous registers

MR

MF

MX MY

*
+,-

AR

AF

AX AY

+,-,..

D
P

Address

generation

unit (AGU)

Address-

registers

A0, A1, A2

..

Different functionality of registers An, AX, AY, AF,MX, MY, MF, MR

Example (ADSP 210x):

 - 50 - BF - ES

Separate address generation units (AGUs)

 Data memory can only be

fetched with address contained

in A,

 but this can be done in parallel

with operation in main data path

(takes effectively 0 time).

 A := A ± 1 also takes 0 time,

 same for A := A ± M;

 A := <immediate in instruction>

requires extra instruction

Example (ADSP 210x):

26

 - 51 - BF - ES

Modulo addressing

Modulo addressing:

Am++ Am:=(Am+1) mod n

(implements ring or circular

buffer in memory)

..

x[t1-1]

x[t1]

x[t1-n+1]

x[t1-n+2]

..

Memory, t=t1 Memory, t2=t1+1

sliding window
x

t1
t

n most

recent

values

..

x[t1-1]

x[t1]

x[t1+1]

x[t1-n+2]

..

 - 52 - BF - ES

Returns largest/smallest number in case of over/underflows

Example:

a 0111

b + 1001

standard wrap around arithmetic (1)0000

saturating arithmetic 1111

(a+b)/2: correct 1000

 wrap around arithmetic 0000

 saturating arithmetic + shifted 0111

Appropriate for DSP/multimedia applications:
• No timeliness of results if interrupts are generated for overflows

• Precise values less important

• Wrap around arithmetic would be worse.

Saturating arithmetic

„almost correct“

27

 - 53 - BF - ES

Multimedia-Instructions/Processors

 Multimedia instructions exploit that many registers,

adders etc are quite wide (32/64 bit),

 whereas most multimedia data types are narrow

(e.g. 8 bit per color, 16 bit per audio sample per channel)

 2-8 values can be stored per register and added. E.g.:

+

4 additions per instruction;

carry disabled at word

boundaries.

 - 54 - BF - ES

Key idea of very long instruction word
(VLIW) computers

 Instructions included in long instruction packets.

Instruction packets are assumed to be executed in

parallel.

 Fixed association of packet bits with functional

units.

28

 - 55 - BF - ES

Very long instruction word (VLIW) architectures

 Very long instruction word

(“instruction packet”) contains several instructions, all of which are

assumed to be executed in parallel.

 Compiler is assumed to generate these “parallel” packets

 Complexity of finding parallelism is moved from the hardware

(RISC/CISC processors) to the compiler;

Ideally, this avoids the overhead (silicon, energy, ..) of identifying

parallelism at run-time.

A lot of expectations into VLIW machines

 Explicitly parallel instruction set computers (EPICs) are an

extension of VLIW architectures: parallelism detected by compiler,

but no need to encode parallelism in 1 word.

 - 56 - BF - ES

Large # of delay slots,

a problem of VLIW processors

add sub and or

sub mult xor div

ld st mv beq

29

 - 57 - BF - ES

Large # of delay slots,

a problem of VLIW processors

add sub and or

sub mult xor div

ld st mv beq

 - 58 - BF - ES

Large # of delay slots,

a problem of VLIW processors

The execution of many instructions has been started before it is

realized that a branch was required.

Nullifying those instructions would waste compute power

 Executing those instructions is declared a feature, not a bug.

 How to fill all “delay slots“ with useful instructions?

 Avoid branches wherever possible.

add sub and or

sub mult xor div

ld st mv beq

