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REVIEW: Embedded System Hardware 

Embedded system hardware is frequently used in a loop 

(„hardware in a loop“): 

actuators 
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REVIEW: Standard layout of sensor systems  

 Sensor: detects/measures entity and converts it to 
electrical domain 
 May entail ES-controllable actuation: e.g. charge transfer in 

CCD 

 Amplifier: adjusts signal to the dynamic range of the A/D 
conversion 
 Often dynamically adjustable gain: e.g. ISO settings at digital 

cameras, input gain for microphones (sound or ultrasound), 
extremely wide dynamic ranges in seismic data logging 

 Sample + hold: samples signal at discrete time instants 

 A/D conversion: converts samples to digital domain 

Sensor Amplifier 
Sample 

and hold 

A/D 

conversion 
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Discretization of time 

Vx is a sequence of values or a mapping ℤ  ℝ 

 

Discrete time: sample and hold-devices. 

Ideally: width of clock pulse -> 0 

Ve is a mapping ℝ  ℝ 
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Sample and Hold  

Input 

Output 

Clock 
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Discretization of values: A/D-converters 

1. Flash A/D converter (1) 

 Basic element: analog comparator 

 

 

 

 

 Output = ´1´ if voltage at input + exceeds that at input -. 

 Output = ´0´ if voltage at input - exceeds that at input +. 

 

 Idea: 

 Generate n different voltages by voltage divider (resistors),  

e.g. Vref, ¾ Vref, ½ Vref, ¼ Vref. 

 Use n comparators for parallel comparison of input voltage Vx to these 

voltages. 

 Encoder to compute digital output. 
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Discretization of values: A/D-converters 

1. Flash A/D converter (2) 

Parallel comparison with 

reference voltage 

Applications: e.g. in video 

processing 
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Discretization of values 

2. Successive approximation  

Key idea: binary search: 

 Set MSB='1' 

 if too large: reset MSB 

 Set MSB-1='1' 

 if too large: reset MSB-1 
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Successive approximation (2) 
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Digital-to-Analog (D/A) Converters  

 Convert digital value to conductivity proportional to the 

digital value 
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Operational amplifier 

• Use operational amplifier to convert conductivity to 

voltage: V = - Vref R2 / R1 
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Digital-to-Analog (D/A) Converters (3) 
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Design Issues with Sensors 

 Calibration 
 Relating measurements to the physical phenomenon 

 Can dramatically increase manufacturing costs 

 Nonlinearity 
 Measurements may not be proportional to physical phenomenon 

 Correction may be required 

 Feedback can be used to keep operating point in the linear 
region 

 Sampling 
 Aliasing 

 Missed events 

 Noise 
 Analog signal conditioning 

 Digital filtering 

 Introduces latency 
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Aliasing 

 Periods of p=8,4,1 

 Indistinguishable if sampled at integer times, ps=1 
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Aliasing 

 

Nyquist criterion (sampling theory): 

Aliasing can be avoided if we restrict the frequencies of 

the incoming signal to less than half of the sampling 

rate. 

 

ps < ½ pN  where pN is the period of the “fastest” sine wave 

or  fs > 2 fN  where fN is the frequency of the “fastest” sine wave 

 

fN is called the Nyquist frequency, fs is the sampling rate. 

See e.g. [Oppenheim/Schafer, 2009] 
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Graphics 

(Wikimedia Commons) 
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Anti-aliasing filter 

A filter is needed to remove high frequencies 

fs 

)(

)(

te

tg
Ideal filter 

fs /2 

e4(t) changed into e3(t)  

Realizable 

filter 
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Possible to reconstruct input signal? 

 Assuming Nyquist criterion met 

 Let {ts}, s = ...,−1,0,1,2, ... be times at which we sample g(t) 

 Assume a constant sampling rate of 1/ps (∀s: ps = ts+1−ts). 

 According to sampling theory, we can approximate the input signal 

using the Shannon-Whittaker interpolation: 

[Oppenheim, Schafer, 2009] 

Weighting factor 

for influence of 

y(ts) at time t 
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Weighting factor for influence of y(ts) 

at time t 

No influence at ts+n 
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Contributions from the various sampling 

instances 
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(Attempted) reconstruction of input signal 

* 

* Assuming 0-

order hold 
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How to compute the sinc( ) function? 

 Filter theory: The required interpolation is performed by an 

ideal low-pass filter (sinc is the Fourier transform of the low-

pass filter transfer function) 

fs 

)(

)(

ty

tz

fs /2 

Filter removes high frequencies present in y(t)  
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How precisely are we reconstructing the input? 

 Sampling theory: 

• Reconstruction using sinc () is precise 

 However, it may be impossible to really compute z(t)  
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Limitations 

 Actual filters do not compute sinc( ) 

In practice, filters are used as an approximation. 

Computing good filters is an art itself! 

 All samples must be known to reconstruct e(t) or g(t). 

 Waiting indefinitely before we can generate output! 

In practice, only a finite set of samples is available.  

 Actual signals are never perfectly bandwidth limited. 

 Quantization noise cannot be removed. 
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Actuators and output 

 Huge variety of actuators and outputs 

 Two base types: 

• analogue drive  
  (requires D/A conversion, unless  on/off sufficient) 

• CRTs, speakers, electrical motors with collector 

• electromagnetic (e.g., coils) or electrostatic drives 

• piezo drives 

• digital drive (requires amplification only) 

• LEDs 

• stepper motors 

• relais, electromagnetic valve (if actuation slope irrelevant) 
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Micromotors 

(© MCNC) (TU Berlin) 
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Interfaces 
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Interfaces 

 Pulse width modulation (PWM) 

 

 General-Purpose Digital I/O (GPIO) 

 

  Parallel 

  Multiple data lines transmitting data 

 Ex: PCI, ATA, CF cards, Bus  

 

  Serial 

 Single data line transmitting data 

 Ex: USB, SATA, SD cards,  
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Example Using a Serial Interface 

In an Atmel AVR 8-bit microcontroller, to send a byte over 

a serial port, the following C code will do: 

 

 while(!(UCSR0A & 0x20)); 

 UDR0 = x; 

 

• x is a variable of type uint8. 

• UCSR0A and UDR0 are variables defined in header. 

• They refer to memory-mapped registers. 
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Send a Sequence of Bytes 

for(i = 0; i < 8; i++) { 

 while(!(UCSR0A & 0x20)); 

 UDR0 = x[i]; 

} 

 

How long will this take to execute? Assume: 

• 57600 baud serial speed. 

• 8/57600 =139 microseconds.  

• Processor operates at 18 MHz. 

Each while loop will consume 2500 cycles. 



16 

 -  31 - BF - ES 

Input Mechanisms in Software 

  Polling 

 Main loop checks each  

I/O device periodically. 

 If input is ready,  

processor initiates  

communication. 

 

 

  Interrupts 

 External hardware alerts 

the processor that input is 

ready. 

 Processor suspends what 

it is doing, invokes an 

interrupt service routine 

(ISR). 
Processor Setup Code 

Processor checks I/O control register  

for status of peripheral 1 
Processor services I/O 1 

Processor checks I/O control register  

for status of peripheral 2 

Processor checks I/O control register  

for status of peripheral 3 

Processor services I/O 2 

Processor services I/O 3 

Ready 

Ready 

Ready 

Not Ready 

Not Ready 

Not Ready 

Processor Setup Code 

Register the Interrupt Service Routine 

Processor executes task code Run Interrupt Service Routine 

Interrupt! 

Context switch 

Resume 
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Timed Interrupt 

Timer 

Update Tick / Sample 

When timer expires,  

interrupt processor 

Reset timer 

Processor jumps to ISR 

Resumes 

Processor Setup 

Register Interrupt Service Routine 

Initialize Timer 

Execute Task Code 
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volatile uint timer_count = 0; 

void ISR(void) { 

  if(timer_count != 0) {  

    timer_count--; 

  } 

} 

int main(void) { 

  // initialization code 

  SysTickIntRegister(&ISR);   

  ... // other init 

  timer_count = 2000; 

  while(timer_count != 0) { 

    ... code to run for 2 seconds 

  } 

} 

Example:  

Do something for 2 seconds then stop 

volatile: C keyword to tell the 

compiler that this variable may 

change at any time, not (entirely) 

under the control of this program. 

static variable: declared outside 

main() puts them in statically 

allocated memory (not on the 

stack) 

Interrupt service routine 

Registering the ISR to be invoked 

on every SysTick interrupt 
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Example 

 



18 

 -  35 - BF - ES 

Embedded System Hardware 

Embedded system hardware is frequently used 

in a loop (“hardware in a loop“): 

 cyber-physical systems 
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Microcontrollers 

 Integrate several components of a microprocessor 

system onto one chip 
CPU, Memory, Timer, IO 

 Low cost,  

small packaging 

 Easy integration  

with circuits 

 Single-purpose 

 

 

PIC16C8X 
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Application Specific Circuits (ASICS) 

or Full Custom Circuits  

 Approach suffers from 

 long design times, 

 lack of flexibility 

(changing standards) and 

 high costs 

(e.g. Mill. $ mask costs).  

 Custom-designed circuits 

necessary 

 if ultimate speed or 

 energy efficiency is the goal and 

 large numbers can be sold. 
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Energy 

© Hugo De Man, 

IMEC, Philips, 2007 
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Low Power vs. Low Energy 

Consumption 

 Minimizing power consumption important for 

• the design of the power supply 

• the design of voltage regulators 

• the dimensioning of interconnect 

• short term cooling 

 Minimizing energy consumption important due to 

• restricted availability of energy (mobile systems) 

– limited battery capacities (only slowly improving) 

– very high costs of energy (solar panels, in space)  

• cooling 

– high costs 

– limited space 

• dependability  

• long lifetimes, low temperatures 
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Dynamic power management (DPM) 

 RUN: operational 

 IDLE: a SW routine 

may stop the CPU 

when not in use, while 

monitoring interrupts 

 SLEEP: Shutdown of 

on-chip activity 

RUN 

SLEEP IDLE 

400mW 

160µW 50mW 

90µs 

10µs 

10µs 
160ms 

Example: STRONGARM SA1100 

Power fault    

signal 
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Fundamentals of dynamic voltage 

scaling (DVS) 

Power consumption of CMOS 

circuits (ignoring leakage): 

frequencyclock :

tagesupply vol:

ecapacitanc load:

activity switching:
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Delay for CMOS circuits: 

[Courtesy, 

Yasuura, 2000] 
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Variable-voltage/frequency example: 

 INTEL Xscale 
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OS should 

schedule 

distribution 

of the 

energy 

budget. 
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Low voltage, parallel operation more efficient 

than high voltage, sequential operation 

Basic equations 

Power:      P ~ VDD² , 

Maximum clock frequency:   f ~ VDD , 

Energy to run a program:  E = P  t, with: t = runtime 

Time to run a program:   t ~ 1/f 

Changes due to parallel processing, with  operations per clock: 

Clock frequency reduced to:   f ’ = f / , 

Voltage can be reduced to:  VDD’ =VDD / , 

Power for parallel processing:  P° = P / ² per operation, 

Power for  operations per clock:  P’ =   P° = P / ,  

Time to run a program is still:   t’ = t, 

Energy required to run program:  E’ = P’  t = E /  

Argument in favour of voltage scaling, 

VLIW processors, and multi-cores  

Rough 

approxi-

mations! 
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Application: VLIW processing and vol-tage 

scaling in the Crusoe processor 

 VDD:   32 levels (1.1V - 1.6V) 

 Clock: 200MHz - 700MHz in increments of 33MHz 

 

Scaling is triggered when CPU load change is detected 

by software (~1/2 ms). 

 More load: Increase of supply voltage (~20 ms/step), 

followed by scaling clock frequency 

 Less load: reduction of clock frequency, followed by 

reduction of supply voltage 

Worst case (1.1V to 1.6V VDD, 200MHz to 700MHz) takes 

280 ms 
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Result (as published by transmeta) 

[www.transmeta.com] 

Pentium Crusoe 

Running the same multimedia application. 
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Digital Signal Processing (DSP) 

Example: Filtering 

Signal at t=ts (sampling points) 
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Filtering in digital signal processing 

outer loop over  

sampling times ts 

 

{ MR:=0; A1:=1; A2:=s-1; 

  MX:=w[s]; MY:=a[0]; 

  for (k=0; k <= (n−1); k++) 

   { MR:=MR + MX * MY; 

     MX:=w[A2]; MY:=a[A1]; 
     A1++; A2--; 

    } 

  x[s]:=MR; 

 } 

ADSP 2100 
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DSP-Processors:  multiply/accumulate (MAC) 

and zero-overhead loop (ZOL) instructions 

MR:=0; A1:=1; A2:=n-2; MX:=x[n-1]; MY:=a[0]; 

for ( j:=1 to n) 

  {MR:=MR+MX*MY; MY:=a[A1]; MX:=x[A2]; A1++; A2--} 

Multiply/accumulate (MAC) instruction Zero-overhead loop (ZOL) 

instruction preceding MAC 

instruction. 

Loop testing done in parallel to 

MAC operations. 
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Heterogeneous registers 

MR 

MF 

MX MY 

* 
+,- 

AR 

AF 

AX AY 

+,-,.. 

D 
P 

Address 

generation 

unit (AGU) 

Address- 

registers 

A0, A1, A2 

.. 

 

Different functionality of registers An, AX, AY, AF,MX, MY, MF, MR 

Example (ADSP 210x): 
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Separate address generation units (AGUs) 

 Data memory can only be 

fetched with address contained 

in A, 

 but this can be done in parallel 

with operation in main data path 

(takes effectively 0 time). 

 A := A ± 1 also takes 0 time, 

 same for A := A ± M; 

 A := <immediate in instruction> 

requires extra instruction 

 

Example (ADSP 210x): 
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Modulo addressing 

Modulo addressing: 

Am++  Am:=(Am+1) mod n 

(implements ring or circular 

buffer in memory) 

 

 

.. 

x[t1-1] 

x[t1] 

x[t1-n+1] 

x[t1-n+2] 

.. 

Memory, t=t1 Memory, t2=t1+1 

sliding window 
x 

t1 
t 

n most 

recent 

values 

.. 

x[t1-1] 

x[t1] 

x[t1+1] 

x[t1-n+2] 

.. 
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Returns largest/smallest number in case of over/underflows 

Example: 

a       0111 

b      +  1001 

standard wrap around arithmetic       (1)0000 

saturating arithmetic    1111 

(a+b)/2:  correct    1000 

  wrap around arithmetic  0000 

  saturating arithmetic + shifted 0111 

Appropriate for DSP/multimedia applications: 
• No timeliness of results if interrupts are generated for overflows 

• Precise values less important 

• Wrap around arithmetic would be worse. 

Saturating arithmetic 

„almost correct“ 
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Multimedia-Instructions/Processors 

 Multimedia instructions exploit that many registers, 

adders etc are quite wide (32/64 bit), 

 whereas most multimedia data types are narrow 

(e.g. 8 bit per color, 16 bit per audio sample per channel) 

 2-8 values can be stored per register and added. E.g.: 

+ 

4 additions per instruction; 

carry disabled at word 

boundaries. 
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Key idea of very long instruction word 
(VLIW) computers 

 Instructions included in long instruction packets. 

Instruction packets are assumed to be executed in 

parallel. 

 Fixed association of packet bits with functional 

units. 
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Very long instruction word (VLIW) architectures 

 Very long instruction word 

(“instruction packet”) contains several instructions, all of which are 

assumed to be executed in parallel. 

 Compiler is assumed to generate these “parallel” packets 

 Complexity of finding parallelism is moved from the hardware 

(RISC/CISC processors) to the compiler; 

Ideally, this avoids the overhead (silicon, energy, ..) of identifying 

parallelism at run-time. 

A lot of expectations into VLIW machines 

 Explicitly parallel instruction set computers (EPICs) are an 

extension of VLIW architectures: parallelism detected by compiler, 

but no need to encode parallelism in 1 word. 
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Large # of delay slots, 

a problem of VLIW processors 

add sub and or 

sub mult xor div 

ld st mv beq 
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Large # of delay slots, 

a problem of VLIW processors 

add sub and or 

sub mult xor div 

ld st mv beq 
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Large # of delay slots, 

a problem of VLIW processors 

The execution of many instructions has been started before it is 

realized that a branch was required. 

Nullifying those instructions would waste compute power 

 Executing those instructions is declared a feature, not a bug. 

 How to fill all “delay slots“ with useful instructions? 

 Avoid branches wherever possible. 

add sub and or 

sub mult xor div 

ld st mv beq 


