Embedded Systems
TMS320C6x Datapath

- 2 Data Paths
- 8 Functional Units
 - Orthogonal/Independent
 - 6 Arithmetic Units
 - 2 Multipliers
- Control
 - Independent
 - Up to 8 32-bit Instructions in parallel
- Registers
 - 2 Files
 - 32, 32-bit Registers Total
- Cross paths (1X, 2X)

- L-Unit (L1, L2)
 - 40-bit Integer ALU
 - Comparisons
 - Bit Counting
 - Normalization
- S-Unit (S1, S2)
 - 32-bit ALU
 - 40-bit Shifter
 - Bitfield Operations
 - Branching
- M-Unit (M1, M2)
 - 16 x 16 -> 32
- D-Unit (D1, D2)
 - 32-bit Add/Subtract
 - Address Calculations

Registers A0 - A15

Registers B0 - B15

- 40-bit Write Paths (8 MSBs)
- 40-bit Read Paths/Store Paths
Overview XILINX FPGA

• All Xilinx FPGAs contain the same basic resources
 – Slices grouped into Configurable Logic Blocks (CLBs)
 • Contain combinatorial logic and register resources
 – IOBs
 • Interface between the FPGA and the outside world
 – Programmable interconnect
 – Other resources
 • Memory
 • Multipliers
 • Global clock buffers
 • Boundary scan logic
Embedded Processors in FPGAs

- **Hard Core**
 - EP is a dedicated physical component of the chip separate from the programmable logic
 - E.g. Xilinx Virtex families (PowerPC 405)

- **Soft Core**
 - Embedded processor is also a synthesized to the FPGA to the programmable logic on the chip
 - E.g. Altera (NIOS), Xilinx (MicroBlaze)
Partial Reconfiguration
Technology and Benefits

- Partial Reconfiguration enables:
 - **System Flexibility**
 - Perform more functions while maintaining communication links
 - **Size and Cost Reduction**
 - Time-multiplex the hardware to require a smaller FPGA
 - **Power Reduction**
 - Shut down power-hungry tasks when not needed
Embedded System Hardware

- Embedded system hardware is frequently used in a loop ("hardware in a loop"): cyber-physical systems
Communication - Requirements -

- Real-time behavior
- Efficient, economical
 (e.g. centralized power supply)
- Appropriate bandwidth and communication delay
- Robustness
- Fault tolerance
- Maintainability
- Diagnosability
- Security
- Safety
For the memory, efficiency is again a concern:

- speed (latency and throughput); predictable timing
- energy efficiency
- size (circle)
- cost
- other attributes (volatile vs. persistent, etc)
Memory hierarchy

- Level 0: Register, internal Caches in CPU
- Level 1: External Caches (SRAM)
- Level 2: Main Memory (DRAM)
- Level 3: Disk Storage (Magnetics)
- Level 4: Tape Units (Magnetics)

“Small is beautiful”
(in terms of energy consumption, access times, size)
Static Timing Analysis
producing the input to schedulability analysis

Schedulability analysis has assumed the knowledge of the execution time of tasks.
So, the problem to solve:

- **Given**
 1. a software task to produce some reaction,
 2. a hardware platform, on which to execute the software,
 3. a required reaction time, e.g. the period of the task.

- **Derive:**
 - a reliable (and precise) upper bound on the execution times.
Timing Analysis

distribution of execution times

- Analysis-guaranteed timing bounds
- Overest.

LB, BCET, WCET, UB, Exec-time
- Architecture Synthesis
- HW/SW Codesign
- Power Aware Computing

3.2.2011 Lecture by Bernd Finkbeiner, Head of Reactive Systems Group at Saarland University (http://react.cs.uni-sb.de/)
Architecture Synthesis

Design a hardware architecture that efficiently executes a given algorithm.

- **tasks:**
 - allocation (determine the necessary hardware resources)
 - scheduling (determine the timing of individual operations)
 - binding (determine relation between individual operations of the algorithm and hardware resources)

Classification of synthesis algorithms →

- Synthesis methods can often be applied *independently of granularity*
Synthesis in Temporal Domain

- Scheduling and binding can be done in different orders or together
- Schedule:
 - Mapping of operations to time slots (cycles)
 - A scheduled sequencing graph is a labeled graph
Schedule in Spatial Domain

- Resource sharing
 - More than one operation bound to same resource
 - Serialized operations

Diagram showing operations and resource sharing in a spatial domain.
BASICS

- Source: Teich: Dig. HW/SW Systeme; Thiele ETHZ
Models

- **Sequence graph** $G_S = (V_S, E_S)$
 where V_S denotes the operations of the algorithm and E_S the dependence relations.

- **Resource graph** $G_R = (V_R, E_R)$, $V_R = V_S \cup V_T$
 where V_T denote the resource types of the architecture and G_R is a bipartite graph. An edge $(v_s, v_t) \in E_R$ represents the availability of a resource type v_t for an operation v_s.

- **Cost function** $c : V_T \rightarrow \mathbb{Z}$

- **Execution times** $w : E_R \rightarrow \mathbb{Z}^\geq 0$
 are assigned to each edge $(v_s, v_t) \in E_R$ and denote the execution time of operation $v_s \in V_S$ on resource type $v_t \in V_T$.
Models

```c
int diffeq(int x, int y, int u, int dx, int a)
{
    int x1, u1, y1;
    while ( x < a ) {
        x1 = x + dx;
        u1 = u - (3 * x * u * dx) - (3 * y * dx);
        y1 = y + u * dx;
        x = x1; u = u1; y = y1;
    }
    return y;
}
```
Allocation and Binding

An allocation is a function $\alpha : V_T \rightarrow \mathbb{Z}^{\geq 0}$ that assigns to each resource type $v_t \in V_T$ the number $\alpha(v_t)$ of available instances.

A binding is defined by functions $\beta : V_S \rightarrow V_T$ and $\gamma : V_S \rightarrow \mathbb{Z}^{>0}$. Here, $\beta(v_s) = v_t$ and $\gamma(v_s) = r$ denote that operation $v_s \in V_S$ is implemented on the rth instance of resource type $v_t \in V_T$.
Scheduling

A schedule is a function \(\tau : V_S \rightarrow \mathbb{Z}^{>0} \) that determines the starting times of operations. A schedule is feasible if the conditions

\[\tau(v_j) - \tau(v_i) \geq w(v_i) \quad \forall (v_i, v_j) \in E_S \]

are satisfied. \(w(v_i) = w(v_i, \beta(v_i)) \) denotes the execution time of operation \(v_i \).

The latency \(L \) of a schedule is the time difference between start node \(v_0 \) and end node \(v_n \):

\[L = \tau(v_n) - \tau(v_0) \]
\[L = \tau(v_n) - \tau(v_0) = 4 \]

\[\tau(v_0) = 1 \]

\[\tau(v_1) = \tau(v_2) \ldots = 1 \]

\[\ldots \]

\[\tau(v_5) = 4 \]

\[\tau(v_n) = 5 \]
Binding

Example ($\alpha(r_1) = 4, \alpha(r_2) = 2$):

$\beta(v_1) = r_1, \gamma(v_1) = 1$

$\beta(v_2) = r_1, \gamma(v_2) = 2$

$\beta(v_3) = r_1, \gamma(v_3) = 2$

...$

$\beta(v_6) = r_1, \gamma(v_3) = 3$

...
As soon as possible (ASAP) scheduling

- **ASAP**: All tasks are scheduled as early as possible
- **Loop over (integer) time steps:**
 - Compute the set of unscheduled tasks for which all predecessors have finished their computation
 - Schedule these tasks to start at the current time step.
ASAP Schedules

\[
\text{ASAP}(G_S(V_S, E_S), w) \{ \\
\tau(v_0) = 1; \\
\text{REPEAT} \{ \\
\quad \text{Determine } v_i \text{ whose predec. are planned;} \\
\quad \tau(v_i) = \max\{\tau(v_j) + w(v_j) \forall (v_j, v_i) \in E_S\} \\
\} \text{ UNTIL } (v_n \text{ is planned}); \\
\text{RETURN } (\tau); \\
\}
\]
As-late-as-possible (ALAP) scheduling

- **ALAP:** All tasks are scheduled as late as possible

 Start at last time step:
 Schedule tasks with no successors and tasks for which all successors have already been scheduled.

* Generate a list, starting at its end
ALAP Schedules

\[
\text{ALAP}(G_S(V_S, E_S), w, L_{max}) \{
\begin{align*}
\tau(v_n) &= L_{max} + 1; \\
\text{REPEAT} & \quad \{ \\
\text{Determine } v_i \text{ whose succ. are planned:} \\
\tau(v_i) &= \min\{\tau(v_j) \forall (v_i, v_j) \in E_S\} - w(v_i) \\
\} \text{ UNTIL } (v_0 \text{ is planned}); \\
\text{RETURN } (\tau); \\
\}
\]
\[
\tau_{\text{net}} = \tau(v_n) - \tau(v_0)
\]
Scheduling under Detailed Timing Constraints

- Motivation
 - Interface design.
 - Control over operation start time.

- Constraints
 - Upper/lower bounds on start-time difference of any operation pair.

- Minimum timing constraints between two operations
 - An operation follows another by \textit{at least} a number of prescribed time steps

- Maximum timing constraints between two operations
 - An operation follows another by \textit{at most} a number of prescribed time steps
Scheduling under Detailed Timing Constraints

- Example
 - Circuit reads data from a bus, performs computation, writes result back on the bus.
 - Bus interface constraint: data written three cycles after read.
 - Minimum and maximum constraint of 3 cycles between read and write operations.
Constraint graph model

- Start from a sequencing graph
- Model delays as weights on edges
- Add forward edges for minimum constraints
- Add backward edges for maximum constraints
Weighted Constraint Graph

In order to represent a *feasible schedule*, we have one edge corresponding to each precedence constraint with

\[d(v_i, v_j) = w(v_i) \]

where \(w(v_i) \) denotes the execution time of \(v_i \).

A consistent assignment of starting times \(\tau(v_i) \) to all operations can be done by solving a *single source longest path* problem.

A possible algorithm (*Bellman-Ford*) has complexity \(O(|V_c| |E_c|) \):

Iteratively set \(\tau(v_j) := \max\{\tau(v_j), \tau(v_i) + d(v_i, v_j) : (v_i, v_j) \in E_C\} \) for all \(v_j \in V_C \) starting from \(\tau(v_i) = -\infty \) for \(v_i \in V_C \setminus \{v_0\} \) and \(\tau(v_0) = 1 \).
Weighted Constraint Graph

Example: \(w(v1) = w(v3) = 2\) \quad \(w(v2) = w(v4) = 1\)

\[\tau(v_j) := \max\{\tau(v_j), \tau(v_i) + d(v_i, v_j)\}\]

Source: Thiele, ETHZ
Solution - Constraint Graph Model

\[\text{Mul delay} = 2 \quad \text{ADD delay} = 1 \]

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Start time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_0)</td>
<td>1</td>
</tr>
<tr>
<td>(v_1)</td>
<td>1</td>
</tr>
<tr>
<td>(v_2)</td>
<td>3</td>
</tr>
<tr>
<td>(v_3)</td>
<td>1</td>
</tr>
<tr>
<td>(v_4)</td>
<td>5</td>
</tr>
<tr>
<td>(v_n)</td>
<td>6</td>
</tr>
</tbody>
</table>
List scheduling: extension of ALAP/ASAP method

Preparation:

- Greedy strategy (does NOT guarantee optimum solution)
- Topological sort of task graph $G=(V,E)$
- Computation of priority of each task:

 Possible priorities u:
 - Number of successors
 - Longest path
 - Mobility $= \tau (\text{ALAP schedule}) - \tau (\text{ASAP schedule})$
 - Defined for each operation
 - Zero mobility implies that an operation can be started only at one given time step
 - Mobility greater than 0 measures span of time interval in which an operation may start → Slack on the start time.
Mobility as a priority function

Mobility is not very precise

\(\tau = 0 \)

\(\tau = 1 \)

\(\tau = 2 \)

\(\tau = 3 \)

\(\tau = 4 \)

\(\tau = 5 \)
Algorithm

\[\text{List}(G(V,E), B, u) \{
\]
\[i := 0; \]
\[\text{repeat} \{ \]
\[\quad \text{Compute set of candidate tasks } A_i; \]
\[\quad \text{Compute set of not terminated tasks } G_i; \]
\[\quad \text{Select } S_i \subseteq A_i \text{ of maximum priority } r \text{ such that } \]
\[\quad |S_i| + |G_i| \leq B \quad (*\text{resource constraint}*) \]
\[\quad \text{foreach} (v_j \in S_i): \tau(v_j) := i; \quad (*\text{set start time}*); \]
\[\quad i := i + 1; \]
\[\}
\[\text{until (all nodes are scheduled);} \]
\[\text{return } (\tau); \]
\[\} \]

Complexity: \(O(|V|) \)
Example

Assuming $B = 2$, unit execution time and $u : \text{path length}$

$u(a) = u(b) = 4$
$u(c) = u(f) = 3$
$u(d) = u(g) = u(h) = u(j) = 2$
$u(e) = u(i) = u(k) = 1$
$\forall i : G_i = 0$

Modified example based on J. Teich
does NOT guarantee optimum solution e.g.

List Scheduling
Integer linear programming models

- **Ingredients:**
 - Cost function
 - Constraints

 \[
 C = \sum_{x_i \in X} a_i x_i \quad \text{with } a_i \in \mathbb{R}, x_i \in \mathbb{N} \quad (1)
 \]

 \[
 \sum_{x_i \in X} b_{i,j} x_i \geq c_j \quad \text{with } b_{i,j}, c_j \in \mathbb{R} \quad (2)
 \]

 Def.: The problem of minimizing (1) subject to the constraints (2) is called an **integer linear programming (ILP) problem**.

 If all \(x_i \) are constrained to be either 0 or 1, the IP problem said to be a **0/1 integer linear programming problem**.
Example

\[C = 5x_1 + 6x_2 + 4x_3 \]

\[x_1 + x_2 + x_3 \geq 2 \]

\[x_1, x_2, x_3 \in \{0,1\} \]

\[
\begin{array}{cccc}
 x_1 & x_2 & x_3 & C \\
 0 & 1 & 1 & 10 \\
 1 & 0 & 1 & 9 \\
 1 & 1 & 0 & 11 \\
 1 & 1 & 1 & 15 \\
\end{array}
\]

Optimal
Remarks on integer programming

- Integer programming is NP-complete

- Running times depend exponentially on problem size, but problems of >1000 vars solvable with good solver (depending on the size and structure of the problem)

- ILP/LP models good starting point for modeling, even if heuristics are used in the end.

- Solvers: lp_solve (public), CPLEX (commercial), …
ILP Formulation of ML-RCS

- Minimize latency given constraints on area or the resources (ML-RCS)

- Use binary decision variables
 - $i = 0, 1, \ldots, n$
 - $l = 1, 2, \ldots, \lambda' + 1$ \(\lambda' \) given upper-bound on latency
 - $x_{il} = 1$ if operation i starts at step l, 0 otherwise.

- Set of linear inequalities (constraints), and an objective function (min latency)
ILP Formulation of ML-RCS

- Observation

\[x_{il} = 0 \quad \text{for} \quad l < t_i^S \quad \text{and} \quad l > t_i^L \]

\((t_i^S = ASAP(v_i), \ t_i^L = ALAP(v_i)) \)

- \(t_i = \sum_{l} l \cdot x_{il} \quad \text{\(t_i \) = start time of op \(i \).} \)

- \(\sum_{m=l-d_i+1}^{l} \ x_{im} = 1 \quad \Rightarrow \text{is op \(v_i \) (still) executing at step \(l \)?} \)
Start Time vs. Execution Time

- For each operation \(v_i \), only one start time
- If \(d_i = 1 \), then the following questions are the same:
 - Does operation \(v_i \) start at step \(l \)?
 - Is operation \(v_i \) running at step \(l \)?
- But if \(d_i > 1 \), then the two questions should be formulated as:
 - Does operation \(v_i \) start at step \(l \)?
 - Does \(x_{il} = 1 \) hold?
 - Is operation \(v_i \) running at step \(l \)?
 - Does the following hold?

\[
\sum_{m=l-d_i+1}^{l} x_{im} = 1 ?
\]
Operation v_i Still Running at Step l?

- Is v_9 running at step 6?
 - Is $x_{9,6} + x_{9,5} + x_{9,4} = 1$?

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>v_9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Note:
 - Only one (if any) of the above three cases can happen
 - To meet resource constraints, we have to ask the same question for **ALL steps**, and **ALL operations of that type**
Operation v_i Still Running at Step l?

- Is v_i running at step l?
 - Is $x_{i,l} + x_{i,l-1} + \cdots + x_{i,l-di+1} = 1$?
ILP Formulation of ML-RCS (cont.)

- **Constraints:**
 - **Unique start times:** \(\sum_{l} x_{il} = 1, \quad i = 0,1,\ldots,n \)
 - **Sequencing (dependency) relations must be satisfied**
 \(t_i \geq t_j + d_j \quad \forall (v_j, v_i) \in E \Rightarrow \sum_{l} l \cdot x_{il} \geq \sum_{l} l \cdot x_{jl} + d_j \)
 - **Resource constraints**
 \(\sum_{i:T(v_i)=k} \sum_{m=l-d_i+1}^{l} x_{im} \leq a_k, \quad k = 1,\ldots,n_{res}, \quad l = 1,\ldots,\bar{\lambda} + 1 \)

- **Objective:** \(\min c^T t. \)
 - \(t = \text{start times vector}, \quad c = \text{cost weight} \)
ILP Example

- Assume $\bar{\lambda} = 4$
- First, perform ASAP and ALAP
 - (we can write the ILP without ASAP and ALAP, but using ASAP and ALAP will simplify the inequalities)
ILP Example: Unique Start Times Constraint

- Without using ASAP and ALAP values:

\[
\begin{align*}
x_{1,1} + x_{1,2} + x_{1,3} + x_{1,4} &= 1 \\
x_{2,1} + x_{2,2} + x_{2,3} + x_{2,4} &= 1 \\
\end{align*}
\]

- Using ASAP and ALAP:
ILP Example: Dependency Constraints

- Using ASAP and ALAP, the non-trivial inequalities are:
 (assuming unit delay for + and *)

\[
2 \cdot x_{7,2} + 3 \cdot x_{7,3} - x_{6,1} - 2 \cdot x_{6,2} - 1 \geq 0
\]

\[
2 \cdot x_{9,2} + 3 \cdot x_{9,3} + 4 \cdot x_{9,4} - x_{8,1} - 2 \cdot x_{8,2} - 3 \cdot x_{8,3} - 1 \geq 0
\]

\[
2 \cdot x_{11,2} + 3 \cdot x_{11,3} + 4 \cdot x_{11,4} - x_{10,1} - 2 \cdot x_{10,2} - 3 \cdot x_{10,3} - 1 \geq 0
\]

\[
4 \cdot x_{5,4} - 2 \cdot x_{7,2} - 3 \cdot x_{7,3} - 1 \geq 0
\]
ILP Example: Resource Constraints

- Resource constraints (assuming 2 adders and 2 multipliers)

 \[
 x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} \leq 2 \\
 x_{3,2} + x_{6,2} + x_{7,2} + x_{8,2} \leq 2 \\
 x_{7,3} + x_{8,3} \leq 2 \\
 x_{10,1} \leq 2 \\
 x_{9,2} + x_{10,2} + x_{11,2} \leq 2 \\
 x_{4,3} + x_{9,3} + x_{10,3} + x_{11,3} \leq 2 \\
 x_{5,4} + x_{9,4} + x_{11,4} \leq 2
 \]

- Objective: \(\text{Min } X_{n,1} + 2X_{n,2} + 3X_{n,3} + 4X_{n,4} \)
Result is different from both ALAP and ASAP schedules
(Time constrained)
Force-directed scheduling

- Goal: balanced utilization of resources
- Based on spring model
- Originally proposed for high-level synthesis
- Force
 - Used as a priority function
 - Related to concurrency – sort operations for least force
 - Mechanical analogy: Force = constant \times \text{displacement}
 - Constant = operation-type distribution
 - Displacement = change in probability

The Force-Directed Scheduling approach reduces the amount of:

- Functional Units
- Registers
- Interconnect

This is achieved by balancing the concurrency of operations to ensure a high utilization of each unit.
Next: computation of “forces”

- Direct forces push each task into the direction of lower values of $D(i)$.
- Impact of direct forces on dependent tasks taken into account by indirect forces
- Balanced resource usage \approx smallest forces
- For our simple example and time constraint=6: result = ALAP schedule
1. Compute time frames $R(j)$
2. Compute “probability” $P(j,i)$ of assignment $j \rightarrow i$

$R(j) = \{\text{ASAP-control step} \ldots \text{ALAP-control step}\}$

$$P(j, i) = \begin{cases} \frac{1}{|R(j)|} & \text{if } i \in R(j) \\ 0 & \text{otherwise} \end{cases}$$

Fixed

Free
3. Compute “distribution” $D(i)$
(# Operations in control step i)

$$D(i) = \sum_{j, \text{type}(j) \in H} P(j, i)$$
Example

\[q_{add}(1) = \frac{1}{3} = 0.33 \]

\[q_{add}(2) = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1 \]

\[q_{add}(3) = 1 + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 2 \]

\[q_{add}(4) = 1 + \frac{1}{3} + \frac{1}{3} = 1.66 \]

\[q_{mult}(1) = 1+1+\frac{1}{2}+\frac{1}{3} = 2.83 \]

\[q_{mult}(2) = 1+\frac{1}{2}+\frac{1}{2}+\frac{1}{3} = 2.33 \]

\[q_{mult}(3) = \frac{1}{2} + \frac{1}{3} = 0.83 \]

\[q_{mult}(4) = 0 \]
Scheduling – An example

Step 3: Calculate the force (a new metric)

A metric called force is introduced. The force is used to optimize the utilization of units. A high positive force value indicates a poor utilization.

\[\text{Force}(j) = DG(j) - \sum_{i=t}^{b} \frac{DG(i)}{(b - t + 1)} \]
Scheduling – An example

Step 3: Calculate the force (a new metric)
With the operation x' in control-step 1.

$Force(1) = DG(1) - \sum_{i=1}^{2} \frac{DG(i)}{2}$

$= 2.833 - \frac{2.833 + 2.333}{2}$

$= 0.25$

DG(1) = 2.833
DG(2) = 2.333
DG(3) = 0.833
DG(4) = 0

Poor utilization
Scheduling – An example

Direct force (calculated as before)

Step 3: Calculate the force (a new metric) with the operation \(x' \) in control-step 2. (\(x'' \) must be in control-step 3)

\[
Force (2) = DG(2) - \sum_{i=1}^{2} \frac{DG(i)}{2}
\]

\[
= 2.333 - \frac{2.833 + 2.333}{2} = 0.833 - \frac{0.833 + 2.333}{2} = -1
\]

DG(1) = 2.833
DG(2) = 2.333
DG(3) = 0.833
DG(4) = 0

Indirect force (on \(x'' \) in control-step 3)

Good utilization
Scheduling – An example

By repeatedly assigning operations to various control-steps and calculating the force associated with the choice several force values will be available.

The Force-directed scheduling algorithm chooses the assignment with the lowest force value, which also balances the concurrency of operations most efficiently.
Overall approach

\[\textbf{procedure} \text{forceDirectedScheduling};\]
\begin{verbatim}
 begin
 AsapScheduling;
 AlapScheduling;
 while not all tasks scheduled do
 begin
 select task \(T \) with smallest total force;
 schedule task \(T \) at time step minimizing forces;
 recompute forces;
 end;
 end
\end{verbatim}

May be repeated for different task/processor classes

Not sufficient for today's complex, heterogeneous hardware platforms
Force-Directed Scheduling

The Force-Directed Scheduling approach reduces the amount of:

- Functional Units
- Registers
- Interconnect

By introducing Registers and Interconnect as storage operations, the force is calculated for these as well.
Force-Directed Scheduling

Min. no. of registers = 7

Min. no. of registers = 5
• Architecture Synthesis
• HW/SW Codesign
• Power Aware Computing

• 3.2.2011 Lecture by Bernd Finkbeiner, Head of Reactive Systems Group at Saarland University (http://react.cs.uni-sb.de/)
Codesign Definition and Key Concepts

- **Codesign**
 - The meeting of system-level objectives by exploiting the trade-offs between hardware and software in a system through their concurrent design.

- **Key concepts**
 - **Concurrent**: hardware and software developed at the same time on parallel paths.
 - **Integrated**: interaction between hardware and software development to produce design meeting performance criteria and functional specs.
Typical Codesign Process

1. System Description (Functional)
2. HW/SW Partitioning
 - Concurrent processes
 - Programming languages
3. HW/SW Evaluation
 - Unified representation (Data/control flow)
4. Software Synthesis
5. Interface Synthesis
 - Instruction set level
 - HW/SW evaluation
6. Hardware Synthesis
7. System Integration
8. Another HW/SW partition

Programming languages unify data/control flow at the instruction set level.