Embedded Systems

O’H‘l’

...........

CS-ES

é'l f)
:

1¢ ﬁ

Synchronous dataflow REVIEW

Multiple tokens consumed and produced per firing

—

———

Synchronous dataflow model takes advantage of this
» Each edge labeled with number of tokens

consumed/produeed each firing A 8 G 5
» Can statically schedule nodes, so can easily use sequentia
program model
« Don’t need real-time operating system and its overhead

Algorithms developed for scheduling nodes into “single-
appearance” schedules
= Only one statement needed to call each node’s associated

procedure Synchronous dataflow

* Allows procedure inlining without code explosion, thus reducing
overhead even more

CS -ES 52

Synchronous DataFlow REVIEW

SDF firing rules:

= Actor enabling = each incoming arc carries at
least \@okens —

= Actor execution = atomic

consumption/production of tokens by an enabled
actor -

= i.e., consume weight tokens on each iacomingarcs
and produce weight tokens on each outgoing arc

= Delay is an initial token load on an arc.

——

CS-ES

Parallel Scheduling of SDF Models REVIEW

SDF is suitable
for automated
mapping onto
parallel
processors and
synthesis of
parallel circuits.

[] []
Sequential Parallel

periodic admissi uential periodic admirallel
schedule (PASS scheduleNE)

(admissible = correct schedule, finite amount of memory required)
CS-ES _4-

Delays REVIEW

= Kahn processes often have an initialization phase

» SDF doesn'’t allow this because rates are not always
constant

= Alternative: an SDF system may start with tokens in its
buffers -

* These behave like delays (signal-processing)

" are sometimes necessary tQ avoid deadlock

CS-ES 5.

SDF Scheduling REVIEW

» Schedule can be determined completely before the
system runs

= Two steps:

1. Establish relative execution rates by solving a system
of linear equations

2. Determine periodic schedule by simulating system for a
single round

CS-ES 6

Balance equations REVIEW

= Number of produced tokens must equal number of
consumed tokens on every edge

£ 2
nC
o=@
= Repetitions (or firing) vector vg of schedule S: number
of firings of each actorin S

= vg(A)n,= vg(B) n,
must be satisfied for each edge

CS-ES 7.

Balance equations REVIEW
topology matrix

2 3 -1 0

M —_ O 1 =

1 2 0 -

‘ 2 0 -

1 1<
_ the (c, r)th entry in the

= M Vg = 0 matrix is the amount of data
iff S is periodic produced by node c on arc

_ _ r each time it is involved
" Full rank (as in this case)

* NO non-zero solution
* no periodic schedule

_{too many tokens accumulate on-A->B.or B->C)

Balance equations REVIEW

@.
?2\
1 1

1
@—

AN L0 1 &

= Non-full rank
« infinite solutions exist D/ / /

= Any multiple of vg = [1 2 2|" satisfies the balance
equations B

'%%nd ABBCC are minimal valid schedules

r

CS-ES 9.

Admissibility of schedules REVIEW

1
Oree:
* No admissible schedule:
@QB_AJthen deadlock__.
= Adding one token oakes
IBACBACBA] valid

= Making a periodic schedule admissible is always
possible, but changes specification...

CS-ES - 10 -

Admissibility of schedules REVIEW

= No admissible schedule:

1 1
Adding one token on Je
e.g., A->C makes 1 1
(CBA| valid % ‘ 1 1

CBA CBA CBA.CBA CBA ...
J5
U Y
;é/7(i o< -

!

CS-ES - 11-

SDF Compiler REVIEW

=

Task for an SDF compiler:
= Allocation of memory for the passing of data between nodes

» Scheduling of nodes onto processors in such a way that data is
available for a block when it is invoked -

Assumptions on the SDF graph:

» The SDF graph is nonterminating and does not deadlock

= The SDF graph is %ected/ —

Goal:

= Development of a periodic admissible parallel schedule (PAPS)
= or a periodic admissible sequential schedule (PASS)

(admissible = correct schedule, finite amount of memory required)
CS-ES - 12-

Does a PASS exist? Lt (5) REVIEW

& /

b " i

"/ 3

{ /g

""\

2>~—»(C)
O

The SDF graph is described by the topology matrix

c —e 0
M=|d 0 -—f
0 —-i g

—

The entry of row r and column c is the number of tokens produced (positive
number) or consumed (negative number) by node c on arcr .

Connections to the outside world are not considered.

CS-ES - 13 -

Does a PASS exist? REVIEW

1,-—» — - l//b\\ /l' R
¢ Nt
b ./’;\ b
Mih 13
{ /g
R
2 '*———fr '\?/‘ \h .

A PSS (periodic sequential schedule) exists if rank (M) = s -1, where s is the
number if nodes in a graph.

There is a v such that Mv = O where O is a vector full of zeros. v describes
the number of firings in each scheduling period.

CS-ES - 14 -

A PASS exists REVIEW

/ - ”‘9\

=
—— li\C/
L

= The rank of the matrix M =

el

/

= Avalid scheduleis ® ={a, b, ¢, ¢}, but not ® ={b, a, c, c}

= The maximum buffer sizes for the arcs areFo =<1,2,2> \

CS-ES - 15 -

A PASS does not exist REVIEW

» The graph has sample rate inconsistencies.
» A schedule for the graph will result in unbounded buffer sizes.

= No PASS can be found (rank (M) = s = 3).

CS-ES - 16 -

PAPS

REVIEW

2D
O 16,
1\ 4,
\ /
N
2 (21
Assumption: Block 1 : 1 time unit
Block 2 : 2 time units
Block 3 : 3 time units
@ﬁ TN N - :Time _
. O0—06 @B
)— o A 3 4 56 ;
EANY S’

Trivial Case - All computations are scheduled on same processor

CS-ES

- 17 -

PAPS REVIEW

= The performance can be improved, if a schedule is constructed that exploits
the potemﬁamm‘mE‘SD'F-graph Here the schedule covers one
single period.

@_ ,.----'”(Processor 1 [1 | 1 2
Processor 2 s W;;

Single Period Schedule

CS-ES - 18-

PAPS

REVIEW

» The performance can be further improved, if the schedule is constructed over

two periods.
PN
O /3_/7
O—“@) |
@ — Time
7 N Processor 1 (11| @ 1-4| 2-2
Precessor2| (3-D° (13 32
Q/ \\ %48 0 1 2 3 4 5 6 1
(D /
74
Double Period Schedule
CS-ES

- 19-

Limitations of the Model

= Asynchronous graphs do exist in digital signal pro Ing. A
solution is to divide the graph into synchronou@{t‘)zsri\p\@t\

and to schedule these graphs. —

= The SDF model does not reflect the real-time nature of the
connections to the real time world.

* |n the construction of a PAPS the run-time of each node is
assumed to be data-independent, which may not be the case.
In hard real-time systems scheduling must also perform with
worst case data, which thus can be taken as time for the
scheduling of a node.

CS-ES - 20 -

Scheduling Choices

= SDF Scheduling Theorem guarantees a schedule will be
found if it exists

» Systems often have many possible schedules

= How can we use this flexibility?
* Reduced code size
» Reduced buffer sizes

CS-ES - 21-

SDF Code Generation

= Often done with prewritten blocks

= For traditional D handwritten implementation of large
functions (e.g.,

* One copy of each block’s code made for each

appearance in the schedule
Ikt

CS-ES - 22 -

Code Generation

* |n this simple-minded approach, the schedule
BBBCDDDDAA

would produce code like

>>Dooodgmw

S EWE i B\ BN B\ BN w

CS-ES

- 23-

Looped Code Generation

= Obvious improvement: use loops

< —

= Rewrite the schedule in “looped” form:

(3B)O)4 D) 2A)

= Generated code becomes
for(i=0;i1<3;i++) B;
C;
for(i=0;i<4;i++)D;
for(i=0;i<2;i++)A

CS-ES

- 24 -

SDF Director

6
- S

Suppose that C requires 8 data values from A to execute.
Suppose further that C takes much longer to execute

than A or B. Then a schedule might look like this:

AP/ -~

C

CS-ES

Conclusion SDF

The SDF model is very useful for regular DSP applications

Used for: simulation, scheduling, memory allocation, code
generation for Digital Signal Processors (HW and SW)

There is a mathematical framework to calculate a PASS or a

PAPS and to determine the maximum size of buffers, if a
PASS/PAPS exists

The work on SDF can be used to derive@and @e

processor implementations

CS-ES - 26 -

Summary dataflow

» Communication exclusively through FIFOs

= Kahn process networks
= blocking read, nonblocking write

" deterministic_

= schedulability undecidable
= Parks” scheduling algorithm

= SDF

» fixed token consumption/production
= compile-time scheduling (no OS): balance equations

CS-ES

- 27 -

Selected Models of computation

Communication/ Shared Message passing

local computations | memory Synchronous | Asynchronous
Undefined Plain text, use cases

components | (Message) sequence charts
Communicating finite | StateCharts SDL

state machines

Data flow (Not useful) 1 rks,
sp
Petri nets C/E neLs_, E/T\nets_,

Discrete event (DE)

P“‘@-'\\?<

\/HDIL*,
Verilog®

 Verilog®,

Only experimental systems, e.g.
distributed DE in Ptolemy

C, C++, Java

C, C++, Java with libraries
CSP, ADA |

Imperative (Von\
umann) model
* Classification based on the implementation of HDLs

CS-ES

- 28-

Imperative (von-Neumann) model

= The von-Neumann model reflects the principles
of operation of standard computers:

Sequential execution of instructions
(sequential control flow, fixed sequence of operations)

Possible branches
Partitioning of applications into threads
In most cases:

« Context switching between threads, frequently based on
pre-emption

« Access to shared memory

CS-ES

- 29.-

From implementation concepts
to programming models

= Example languages
= Machine languages (binary)

=S Assembly languages (mnemonics)

» |[mperative languag roviding a limited abstraction of
machine language C;r Java,)

» Threads/processes

= |nitially available only as entities managed by the operating
system

= Made available to the programmer as well

» Languages initially not designed for communication,
availability of threads made synchronization and
communication a must.

CS-ES

- 30 -

Models vs. languages

= How can we (precisely) capture behavior?
= We may think of languages (C, C++), but computation model is the

key
[N Yo =
i Poet Reci St Stat S t. | | Data-
Models s o o macellwiie pffgug% fl?)v?/ D é/
/;r \- r Y. H . I N
Engli Spanish J C C++ J
LanguageS (_Englist panis apanese ava \//J‘?U
Recipes vs. English Sequential programs vs. C

= Computation models describe system behavior
= Conceptual notion, e.g., recipe, sequential program

= Languages capture models
= Concrete form, e.g., English, C

CS-ES - 31-

Models vs. languages

Models

Languages

Poetry Recipe . Story
English Spanish Japanese

State Sequent.
machine program flow

LT preti

1o

": ;;;;;;

Recipes vs. English

equential programs vs. C

» Variety of languages can capture one model
= E.g., sequential program model > C,C++, Java

= One language can capture variety of models
= E.g., C++ — sequential program model, object-oriented model, state machine

model

= Certain ([@anguages bett

at capturing certain computation models

CS-ES

-

- 32 -

(Other) Languages and Models

= UML (Unified Modelling Lahguage) [Rational 1997]

“systematic” approach to support the first phases of the
design process -

= UML 1.xx not designed for embedded systems
UML 2.xx supports real-time applications

= several diagram types included
UML 1.4)
—>13 (UML 2.0)

In particular variants of-
StateCharts, MSCs, Petri Nets (called acticity diagrams)

CS-ES - 33 -

Java

Java 2 Micro Edition (J2ZME)
CardJava

Real-time specification for Java (JSR-1), see
[fwww.rtj.org

Verilog

= HW description language competing with VHDL
= More popular in the US (VHDL common in Europe)

CS-ES

- 34 -

Many other languages

= Pearl: Designed in Germany for process control
applications. Dating back to the 70s. Popular in Europe.

= Chill: Designed for telephone exchange stations.
Based on PASCAL.

—

= |[EC 60848, STEP 7:
Process control languages using graphical elements

CS-ES - 35-

Introduction - Assembly

| N BN BR RS

E =

Process control languages using graphical elements
CS-ES - 36-

Architecture Design — Models

CS-ES

- 37 -

Specification

= Formal specification of the desired functionality and the
structure (architecture) of an embedded systems is a

necessary step for using computer aided design methods.

* There exist many different formalisms and models of
computation .

= Now:
Relevant models for the architecture

level (hardware synthesis).

CS-ES - 38 -

Task graphs or dependency graph (DG)

—_—

Sequence

Nodes are assumed to be
a ,program” described in
some programming
language, e.g. C or Java.

= Def.: Adependence graph is a directed graph G=(V,E) in
which E c V x V Is a partial order.

= If (v1,v2) € E, then vl is called an immediate predecessor.
of v2 and v2 is called an immediate successor of v1.

CS-ES - 39-

Dependence Graph (DG)

correspond to kelationsy,executed after®).

= A dependence graph describes for the execution of single
operations or tasks. Nodes correspond to tasks or operations, edges

» Usually, a dependence graph describes(a partial ordering between
operations and therefore, leaves freedom ling(parallel or

sequential). It represents parallelism in a program but no branches in
—

control flow. 1
o ()
» A dependence graph is acyclic. 5
= Often, there are additional quantities associated to edges or nodes such as

= execution times, deadli ~arrival times
= communication demand

CS-ES - 40 -

Single Assignment Form

Basic block dependence graph
[C d
' [

—y =b+d;

A & N —

Single assignment for

sequential program - aptimized hardware
CS-ES - 41 -

Dependence graph (DG)

xl = x + dx;
ul = u - (3*x*u*dx) - (3*y*dx);
yl = y + u¥dx;

c = x1 < a; /2, >¢

X

CS-ES - 42 -

Control-Data Flow Graph (CDFG)

» Goal:
= Description of control structures (for example branches) and data dependencies.

= Applications:
» Describing the semantics of programming languages.
. Interna@sentation in compile@or hardware and software.

» Representation:

ntation.

o ination_of control flow (fquential state machine) and dependence represe
Many variants exist.

CS-ES

——

- 43 -

CDFG

a) VHDL-Code: b) CDFG: CFG + DFGs_
ey =l gy
LOOP s 1 At ;@ :
****** [
EXIT WHEN k39; -2 > _ | !
IF (ok = TRUE) -3 : I %
@ ﬂ4 : Fi y\ :
ELSE IS JINopP |
_-?0;—\“\\(s 1ty = | Tt ,'X
(E;k:: TRUE; || -6 fmmmmmsommoe- \
ENDIF, —— ! OP !
k:=k+l, --7 1 :
! I
___—~ END LOOP; ' -5 6
r:=j -8 ! - :
: +__INOP :

CS-ES

Control-Data Flow Graph (CDFG)

= Control Flow Graph:

It corresponds to a finite state machine, which represents the sequential control flow in a
program. T

Branch conditions are very often associated to the outgoing edges of a node.
S e

The operations to be executed within a state (node) are associated in form of a

dependence graph.
S—

» Dependence Graph (also called Data Flow Graph DFG):

CS-ES

_NOP (no operation) aperations represent the start point and end point of the execution. This
form of a graph is called a polar graph: it contains two distinguished nodes, one without

incoming edges, the other one without outgoing edges.

—

- 45 -

Sequence Graph (SG)

» Asequence graph is a hierarchy of directed graphs. A generic element of
the graph is a dependence graph with the following properties:

\

———

= |t contains two kinds of nodes: (a) operations or tasks and (b) hierarchy nodes.

_———

» Each graphis acyclic and polar with two distinguished nodes: the start node and the end
node. No operation is assigned to them (NOP). —

= There are the following hierarchy nodes: (a) module call (CALL) (b) branch (BR) and (c)
iteration (LOOP).

CS-ES - 46 -

Sequence Graph (SG)

e e e Sl s

Example - CALL:

@)
>
&
&
)-———-'--——\-——————--——————
\
\

I |

I |

| |

| |

- 2N : . l

—)/ x:=a*b; e : L

\ 1 |

y =Xt @’ ; @ @ ;

z:=a+b;, oo TTTTTTTTTTTT . ; e . !

\\ l = \// !

submodul(a, z); <. E&gy |
‘/___\a Rl

I = i

PROCDEDURE submodul(m, n) IS

p:=m+n; ““]

g:=m*n;
END submodul

CS-ES 47

Sequence Graph (SG)

I

| ! L

| ! Ly BT S s

i i P TR

I ! BT Pee,

| 1 - ~

0 I s e e S T e

| A [[2N = |
BR T o | s l i 'Gap) i

§ o | 1 1 e} I

' | I I

[| 1 | !

T PR I [[!

- | I | !

CS-ES

Sequence Graph (SG)

Example iteration (differential equation) - LOOP:
int diffeq(int x, inty, int u, int dx, int a)

{intx1, ul, y1;
wa§x<a)§
X1 =x + dx;
ul=u-3*x*u*dx)-(3*y*dx);
yl=y+u*dx;
x=x1,u=ul;y=y1;
}
return y;
}
CS-ES

- 49 -

Sequence Graph (SG)

e e e - e = e e e e =

e = - — -

R W e el e el it S o St) Vi i Wt Erin G i W St € i Y e e B e i i = e i

Y S e ¥ g =g o st ! S

- 50 -

CS-ES

Sequence Graph (SG)
Unit

c =a < b;

IF (c¢) THEN
Po= w4+ N
gq=m* n;

ENDIF

X =a - b;

1 % % +
vav

N K X =
mnnn
£ 05 p

Loop

=X - y; .‘._.-". s
e=4d * x; rd % ffy
sub(x, y); ;; 1 yﬁf

PROCEDURE sub (m,n) ‘ ‘

d = 2*x;
WHILE (d<5)DO
write(d) ;
d=d + 1;

ENDWHILE

P=m+n; 4 F
g=m* n; k :
END sub

Sequence graph

» Hierarchy of chained units
= units model data flow
= hierarchy models control flow

= Special nodes

» start/end nodes: NOP (no operation)
» branch nodes (BR)

= jteration nodes (LOOP

= module call nodes (CALL)

= Aftributes—
» nodes: computation times,@...
» edges: conditions for branches and iterations

CS-ES

52

- 52.-

Selected Models of computation

Communication/ Shared Message passing
local computations | memory Synchronous | Asynchronous
Undefined Plain text, use cases
components (Message) sequence charts
Communicating finite | StateCharts SDL
state machines
Data flow (Not useful) Kahn networks,
SDF
Petri nets C/E nets, P/T nets, ...
| ——\
Discrete event (DE) | VHDL*) Only experimental systems, e.g.
model Verilog®, distributed DE in Ptolemy
—SystemC”*, ...
VVon Neumann model | C, C++, C, C++, Java with libraries
Java CSP, ADA |

* Classification based on implementation

CS-ES

- 53-

Hardware/System description languages

= VDHL
= VHDL-AMS

= SystemC
* TLM

CS-ES

- 54 -

Discrete event semantics

» Basic discrete event (DE) semantics
» Queue of future actions, sorted by time

= Loop:

* Fetch next entry from queue

« Perform function as listed in entry
— May include generation of\new entri%
= Until termé'naticgn criterion = true

‘£\L queue;l =

5 10 13/15 19 U

time
action

- B5 .-

Methods for executing algorithms v{

fardware Reconfigurable
Application Specific computing
Integrated Circuits)

Software-programmed
processors

Advantages: vantages: Advantages: -,)
*very high «fills the gap *software is very
performance and between hardware flexible to change
efficient and software Disadvantages:
Disadvantages: *much higher * performance can
*not flexible (can’t performance than suffer if clock is not
be altered after software fast

fabrication) higher level of «fixed instruction set
.) flosibility 4 oy had

i /hardware
CS-ES — =

- 56 -

Basic Design Methodology

-

carry_in

N

ASIC or FPGA:

g
=

- 57-

