
- 1 -CS - ES

Embedded Systems

- 2 -CS - ES 2

Synchronous dataflow
 Multiple tokens consumed and produced per firing

 Synchronous dataflow model takes advantage of this
 Each edge labeled with number of tokens

consumed/produced each firing
 Can statically schedule nodes, so can easily use sequential

program model
• Don’t need real-time operating system and its overhead

 Algorithms developed for scheduling nodes into “single-
appearance” schedules
 Only one statement needed to call each node’s associated

procedure
• Allows procedure inlining without code explosion, thus reducing

overhead even more

modulate convolve

transform

A B C D

Z

Synchronous dataflow

mt1 ct2

mA mB mC mD

tZ

tt1 tt2

t1 t2

REVIEW

- 3 -CS - ES

Synchronous DataFlow

 Actor enabling = each incoming arc carries at
least weight tokens

 Actor execution = atomic
consumption/production of tokens by an enabled
actor
 i.e., consume weight tokens on each incoming arcs

and produce weight tokens on each outgoing arc
 Delay is an initial token load on an arc.

SDF firing rules:

REVIEW

- 4 -CS - ES

Parallel Scheduling of SDF Models

A

C

D

B

Sequential
periodic admissible sequential

schedule (PASS)

Parallel
periodic admissible parallel

schedule (PAPS)

SDF is suitable
for automated
mapping onto

parallel
processors and

synthesis of
parallel circuits.

(admissible = correct schedule, finite amount of memory required)

REVIEW

- 5 -CS - ES

Delays

 Kahn processes often have an initialization phase

 SDF doesn’t allow this because rates are not always
constant

 Alternative: an SDF system may start with tokens in its
buffers

 These behave like delays (signal-processing)

 Delays are sometimes necessary to avoid deadlock

REVIEW

- 6 -CS - ES

SDF Scheduling

 Schedule can be determined completely before the
system runs

 Two steps:

1. Establish relative execution rates by solving a system
of linear equations

2. Determine periodic schedule by simulating system for a
single round

REVIEW

- 7 -CS - ES

Balance equations

 Number of produced tokens must equal number of
consumed tokens on every edge

 Repetitions (or firing) vector vS of schedule S: number
of firings of each actor in S
 vS(A) np = vS(B) nc

must be satisfied for each edge

np nc
A B

REVIEW

- 8 -CS - ES

Balance equations

 M vS = 0
iff S is periodic
 Full rank (as in this case)

• no non-zero solution
• no periodic schedule

(too many tokens accumulate on A->B or B->C)

3 -1 0
0 1 -1
2 0 -1
2 0 -1

M =

B C

A
3

1

1

1

2
2

1
1

topology matrix

the (c, r)th entry in the
matrix is the amount of data
produced by node c on arc

r each time it is involved

REVIEW

- 9 -CS - ES

Balance equations

 Non-full rank
• infinite solutions exist

 Any multiple of vS = |1 2 2|T satisfies the balance
equations
 ABCBC and ABBCC are minimal valid schedules

2 -1 0
0 1 -1
2 0 -1
2 0 -1

M =

B C

A
2

1

1

1

2
2

1
1

REVIEW

- 10 -CS - ES

Admissibility of schedules

 No admissible schedule:
BACBA, then deadlock…
 Adding one token on A->C makes

BACBACBA valid
 Making a periodic schedule admissible is always

possible, but changes specification...

B C

A
1

2

1

3

2

3

REVIEW

- 11 -CS - ES

Admissibility of schedules

 No admissible schedule:

Adding one token on
e.g., A->C makes

CBA valid

CBA CBA CBA CBA CBA …

B C

A
1

1

1

1

1

1

REVIEW

- 12 -CS - ES

SDF Compiler

Task for an SDF compiler:
 Allocation of memory for the passing of data between nodes
 Scheduling of nodes onto processors in such a way that data is

available for a block when it is invoked

Assumptions on the SDF graph:
 The SDF graph is nonterminating and does not deadlock
 The SDF graph is connected

Goal:
 Development of a periodic admissible parallel schedule (PAPS)
 or a periodic admissible sequential schedule (PASS)

(admissible = correct schedule, finite amount of memory required)

REVIEW

- 13 -CS - ES

Does a PASS exist? REVIEW

- 14 -CS - ES

Does a PASS exist?

 A PSS (periodic sequential schedule) exists if rank (M) = s -1, where s is the
number if nodes in a graph.

 There is a v such that Mv = O where O is a vector full of zeros. v describes
the number of firings in each scheduling period.

REVIEW

- 15 -CS - ES

A PASS exists

 The rank of the matrix M = is s – 1 = 2 and v =

 A valid schedule is Φ = {a, b, c, c}, but not Φ = {b, a, c, c}

 The maximum buffer sizes for the arcs are b =< 1, 2, 2 >

REVIEW

- 16 -CS - ES

A PASS does not exist

 The graph has sample rate inconsistencies.

 A schedule for the graph will result in unbounded buffer sizes.

 No PASS can be found (rank (M) = s = 3).

REVIEW

- 17 -CS - ES

PAPS

 Assumption: Block 1 : 1 time unit
Block 2 : 2 time units
Block 3 : 3 time units

Trivial Case - All computations are scheduled on same processor

REVIEW

- 18 -CS - ES

PAPS

 The performance can be improved, if a schedule is constructed that exploits
the potential parallelism in the SDF-graph. Here the schedule covers one
single period.

Single Period Schedule

REVIEW

- 19 -CS - ES

PAPS

 The performance can be further improved, if the schedule is constructed over
two periods.

Double Period Schedule

REVIEW

- 20 -CS - ES

Limitations of the Model

 Asynchronous graphs do exist in digital signal processing. A
solution is to divide the graph into synchronous subgraphs
and to schedule these graphs.

 The SDF model does not reflect the real-time nature of the
connections to the real time world.

 In the construction of a PAPS the run-time of each node is
assumed to be data-independent, which may not be the case.
In hard real-time systems scheduling must also perform with
worst case data, which thus can be taken as time for the
scheduling of a node.

- 21 -CS - ES

Scheduling Choices

 SDF Scheduling Theorem guarantees a schedule will be
found if it exists

 Systems often have many possible schedules

 How can we use this flexibility?
 Reduced code size
 Reduced buffer sizes

- 22 -CS - ES

SDF Code Generation

 Often done with prewritten blocks

 For traditional DSP, handwritten implementation of large
functions (e.g., FFT)

 One copy of each block’s code made for each
appearance in the schedule

- 23 -CS - ES

Code Generation

 In this simple-minded approach, the schedule
BBBCDDDDAA

would produce code like
B;
B;
B;
C;
D;
D;
D;
D;
A;
A;

- 24 -CS - ES

Looped Code Generation

 Obvious improvement: use loops

 Rewrite the schedule in “looped” form:
(3 B) C (4 D) (2 A)

 Generated code becomes
for (i = 0 ; i < 3; i++) B;
C;
for (i = 0 ; i < 4 ; i++) D;
for (i = 0 ; i < 2 ; i++) A;

- 25 -CS - ES

- 26 -CS - ES

Conclusion SDF

 The SDF model is very useful for regular DSP applications

 Used for: simulation, scheduling, memory allocation, code
generation for Digital Signal Processors (HW and SW)

 There is a mathematical framework to calculate a PASS or a
PAPS and to determine the maximum size of buffers, if a
PASS/PAPS exists

 The work on SDF can be used to derive single and multiple
processor implementations

- 27 -CS - ES

Summary dataflow

 Communication exclusively through FIFOs
 Kahn process networks

 blocking read, nonblocking write
 deterministic
 schedulability undecidable
 Parks‘ scheduling algorithm

 SDF
 fixed token consumption/production
 compile-time scheduling (no OS): balance equations

- 28 -CS - ES

Selected Models of computation

Communication/
local computations

Shared
memory

Message passing
Synchronous | Asynchronous

Undefined
components

Plain text, use cases
| (Message) sequence charts

Communicating finite
state machines

StateCharts SDL

Data flow (Not useful) Kahn networks,
SDF

Petri nets C/E nets, P/T nets, …

Discrete event (DE)
model

VHDL*,
Verilog*,
SystemC*, …

Only experimental systems, e.g.
distributed DE in Ptolemy

Imperative (Von
Neumann) model

C, C++, Java C, C++, Java with libraries
CSP, ADA |

* Classification based on the implementation of HDLs

- 29 -CS - ES

Imperative (von-Neumann) model

 The von-Neumann model reflects the principles
of operation of standard computers:

 Sequential execution of instructions
(sequential control flow, fixed sequence of operations)

 Possible branches
 Partitioning of applications into threads
 In most cases:

• Context switching between threads, frequently based on
pre-emption

• Access to shared memory

- 30 -CS - ES

From implementation concepts
to programming models

 Example languages
 Machine languages (binary)
 Assembly languages (mnemonics)
 Imperative languages providing a limited abstraction of

machine languages (C, C++, Java, ….)

 Threads/processes
 Initially available only as entities managed by the operating

system
 Made available to the programmer as well
 Languages initially not designed for communication,

availability of threads made synchronization and
communication a must.

- 31 -CS - ES

Models vs. languages

 How can we (precisely) capture behavior?
 We may think of languages (C, C++), but computation model is the

key

 Computation models describe system behavior
 Conceptual notion, e.g., recipe, sequential program

 Languages capture models
 Concrete form, e.g., English, C

Models

Languages

Recipe

SpanishEnglish Japanese

Poetry Story Sequent.
program

C++C Java

State
machine

Data-
flow

Recipes vs. English Sequential programs vs. C

- 32 -CS - ES

Models vs. languages

 Variety of languages can capture one model
 E.g., sequential program model C,C++, Java

 One language can capture variety of models
 E.g., C++ → sequential program model, object-oriented model, state machine

model

 Certain languages better at capturing certain computation models

Models

Languages

Recipe

SpanishEnglish Japanese

Poetry Story Sequent.
program

C++C Java

State
machine

Data-
flow

Recipes vs. English Sequential programs vs. C

- 33 -CS - ES

(Other) Languages and Models

 UML (Unified Modelling Language) [Rational 1997]
“systematic” approach to support the first phases of the
design process

 UML 1.xx not designed for embedded systems
UML 2.xx supports real-time applications

 several diagram types included
9 (UML 1.4)
13 (UML 2.0)
in particular variants of
StateCharts, MSCs, Petri Nets (called acticity diagrams)

- 34 -CS - ES

Java
Java 2 Micro Edition (J2ME)
CardJava
Real-time specification for Java (JSR-1), see
//www.rtj.org

Verilog

 HW description language competing with VHDL
 More popular in the US (VHDL common in Europe)

- 35 -CS - ES

Many other languages

 Pearl: Designed in Germany for process control
applications. Dating back to the 70s. Popular in Europe.

 Chill: Designed for telephone exchange stations.
Based on PASCAL.

 IEC 60848, STEP 7:
Process control languages using graphical elements

- 36 -CS - ES

Introduction - Assembly

IEC 60848, STEP 7:
Process control languages using graphical elements

- 37 -CS - ES

Architecture Design – Models

- 38 -CS - ES

Specification

 Formal specification of the desired functionality and the
structure (architecture) of an embedded systems is a
necessary step for using computer aided design methods.

 There exist many different formalisms and models of
computation

 Now:
Relevant models for the architecture
level (hardware synthesis).

- 39 -CS - ES

Task graphs or dependency graph (DG)

 Def.: A dependence graph is a directed graph G=(V,E) in
which E V V is a partial order.

 If (v1, v2) E, then v1 is called an immediate predecessor
of v2 and v2 is called an immediate successor of v1.

Nodes are assumed to be
a „program“ described in
some programming
language, e.g. C or Java.

Sequence
constraint

- 40 -CS - ES

Dependence Graph (DG)

 A dependence graph describes order relations for the execution of single
operations or tasks. Nodes correspond to tasks or operations, edges
correspond to relations („executed after“).

 Usually, a dependence graph describes a partial ordering between
operations and therefore, leaves freedom for scheduling (parallel or
sequential). It represents parallelism in a program but no branches in
control flow.

 A dependence graph is acyclic.

 Often, there are additional quantities associated to edges or nodes such as
 execution times, deadlines, arrival times
 communication demand

- 41 -CS - ES

Single Assignment Form

Basic block dependence graph

x = a + b;
y = c - d;
z = x * y;
y = b + d;

Single assignment form

x = a + b;
y = c - d;
z = x * y;
y1 = b + d;

-

a b
d

* +

y

z y1

c

x

+

sequential program optimized hardware

- 42 -CS - ES

Dependence graph (DG)
xl = x + dx;
ul = u – (3*x*u*dx) – (3*y*dx);
yl = y + u*dx;
c = xl < a;

* *

*

-

*

*

-

* +

3 x u dx 3 y u dx dxx

+ <

a
xl

ydx

y1 cu

u1

- 43 -CS - ES

Control-Data Flow Graph (CDFG)

 Goal:
 Description of control structures (for example branches) and data dependencies.

 Applications:
 Describing the semantics of programming languages.
 Internal representation in compilers for hardware and software.

 Representation:
 Combination of control flow (sequential state machine) and dependence representation.
 Many variants exist.

- 44 -CS - ES

CDFG

- 45 -CS - ES

Control-Data Flow Graph (CDFG)

 Control Flow Graph:
 It corresponds to a finite state machine, which represents the sequential control flow in a

program.

 Branch conditions are very often associated to the outgoing edges of a node.

 The operations to be executed within a state (node) are associated in form of a
dependence graph.

 Dependence Graph (also called Data Flow Graph DFG):

 NOP (no operation) operations represent the start point and end point of the execution. This
form of a graph is called a polar graph: it contains two distinguished nodes, one without
incoming edges, the other one without outgoing edges.

- 46 -CS - ES

Sequence Graph (SG)

 A sequence graph is a hierarchy of directed graphs. A generic element of
the graph is a dependence graph with the following properties:

 It contains two kinds of nodes: (a) operations or tasks and (b) hierarchy nodes.

 Each graph is acyclic and polar with two distinguished nodes: the start node and the end
node. No operation is assigned to them (NOP).

 There are the following hierarchy nodes: (a) module call (CALL) (b) branch (BR) and (c)
iteration (LOOP).

- 47 -CS - ES

Sequence Graph (SG)

Example - CALL:

x := a * b;
y := x * c;
z := a + b;
submodul(a, z);

PROCDEDURE submodul(m, n) IS
p := m + n;
q := m * n;
END submodul

- 48 -CS - ES

Sequence Graph (SG)

Example - BR:

x := a * b;
y := x * c;
z := a + b;
IF z > 0 THEN

p := m + n;
q := m * n;

END IF

- 49 -CS - ES

Sequence Graph (SG)

Example iteration (differential equation) - LOOP:
int diffeq(int x, int y, int u, int dx, int a)

{ int x1, u1, y1;
while (x < a) {

x1 = x + dx;
u1 = u - (3 * x * u * dx) - (3 * y * dx);
y1 = y + u * dx;
x = x1; u = u1; y = y1;

}
return y;

}

- 50 -CS - ES

Sequence Graph (SG)

- 51 -CS - ES
51

Unit Branch

Loop Call

Sequence Graph (SG)

- 52 -CS - ES

Sequence graph

 Hierarchy of chained units
 units model data flow
 hierarchy models control flow

 Special nodes
 start/end nodes: NOP (no operation)
 branch nodes (BR)
 iteration nodes (LOOP)
 module call nodes (CALL)

 Attributes
 nodes: computation times, cost, ...
 edges: conditions for branches and iterations

52

- 53 -CS - ES

Selected Models of computation

Communication/
local computations

Shared
memory

Message passing
Synchronous | Asynchronous

Undefined
components

Plain text, use cases
| (Message) sequence charts

Communicating finite
state machines

StateCharts SDL

Data flow (Not useful) Kahn networks,
SDF

Petri nets C/E nets, P/T nets, …

Discrete event (DE)
model

VHDL*,
Verilog*,
SystemC*, …

Only experimental systems, e.g.
distributed DE in Ptolemy

Von Neumann model C, C++,
Java

C, C++, Java with libraries
CSP, ADA |

* Classification based on implementation

- 54 -CS - ES

Hardware/System description languages

 VDHL
 VHDL-AMS

 SystemC
 TLM

- 55 -CS - ES

Discrete event semantics

 Basic discrete event (DE) semantics
 Queue of future actions, sorted by time
 Loop:

• Fetch next entry from queue
• Perform function as listed in entry

– May include generation of new entries
 Until termination criterion = true

a
b
c

time
actiona:=5 b:=7 c:=8 a:=6 a:=9

queue

5 10 13 15 195
7
8

6

- 56 -CS - ES

Methods for executing algorithms

Advantages:
•very high
performance and
efficient

Disadvantages:
•not flexible (can’t
be altered after
fabrication)

• expensive

Hardware
(Application Specific
Integrated Circuits)

Software-programmed
processors

Advantages:
•software is very
flexible to change

Disadvantages:
•performance can
suffer if clock is not
fast

•fixed instruction set
by hardware

Reconfigurable
computing

Advantages:
•fills the gap
between hardware
and software

•much higher
performance than
software

•higher level of
flexibility than
hardware

- 57 -CS - ES

Basic Design Methodology

Requirements

SimulateRTL Model

Gate-level
Model

Synthesize

Simulate Test Bench

ASIC or FPGA Place & Route

Timing
Model Simulate

