
- 1 -CS - ES

Embedded Systems

- 2 -CS - ES 2

Synchronous dataflow
 Multiple tokens consumed and produced per firing

 Synchronous dataflow model takes advantage of this
 Each edge labeled with number of tokens

consumed/produced each firing
 Can statically schedule nodes, so can easily use sequential

program model
• Don’t need real-time operating system and its overhead

 Algorithms developed for scheduling nodes into “single-
appearance” schedules
 Only one statement needed to call each node’s associated

procedure
• Allows procedure inlining without code explosion, thus reducing

overhead even more

modulate convolve

transform

A B C D

Z

Synchronous dataflow

mt1 ct2

mA mB mC mD

tZ

tt1 tt2

t1 t2

REVIEW

- 3 -CS - ES

Synchronous DataFlow

 Actor enabling = each incoming arc carries at
least weight tokens

 Actor execution = atomic
consumption/production of tokens by an enabled
actor
 i.e., consume weight tokens on each incoming arcs

and produce weight tokens on each outgoing arc
 Delay is an initial token load on an arc.

SDF firing rules:

REVIEW

- 4 -CS - ES

Parallel Scheduling of SDF Models

A

C

D

B

Sequential
periodic admissible sequential

schedule (PASS)

Parallel
periodic admissible parallel

schedule (PAPS)

SDF is suitable
for automated
mapping onto

parallel
processors and

synthesis of
parallel circuits.

(admissible = correct schedule, finite amount of memory required)

REVIEW

- 5 -CS - ES

Delays

 Kahn processes often have an initialization phase

 SDF doesn’t allow this because rates are not always
constant

 Alternative: an SDF system may start with tokens in its
buffers

 These behave like delays (signal-processing)

 Delays are sometimes necessary to avoid deadlock

REVIEW

- 6 -CS - ES

SDF Scheduling

 Schedule can be determined completely before the
system runs

 Two steps:

1. Establish relative execution rates by solving a system
of linear equations

2. Determine periodic schedule by simulating system for a
single round

REVIEW

- 7 -CS - ES

Balance equations

 Number of produced tokens must equal number of
consumed tokens on every edge

 Repetitions (or firing) vector vS of schedule S: number
of firings of each actor in S
 vS(A) np = vS(B) nc

must be satisfied for each edge

np nc
A B

REVIEW

- 8 -CS - ES

Balance equations

 M vS = 0
iff S is periodic
 Full rank (as in this case)

• no non-zero solution
• no periodic schedule

(too many tokens accumulate on A->B or B->C)

3 -1 0
0 1 -1
2 0 -1
2 0 -1

M =

B C

A
3

1

1

1

2
2

1
1

topology matrix

the (c, r)th entry in the
matrix is the amount of data
produced by node c on arc

r each time it is involved

REVIEW

- 9 -CS - ES

Balance equations

 Non-full rank
• infinite solutions exist

 Any multiple of vS = |1 2 2|T satisfies the balance
equations
 ABCBC and ABBCC are minimal valid schedules

2 -1 0
0 1 -1
2 0 -1
2 0 -1

M =

B C

A
2

1

1

1

2
2

1
1

REVIEW

- 10 -CS - ES

Admissibility of schedules

 No admissible schedule:
BACBA, then deadlock…
 Adding one token on A->C makes

BACBACBA valid
 Making a periodic schedule admissible is always

possible, but changes specification...

B C

A
1

2

1

3

2

3

REVIEW

- 11 -CS - ES

Admissibility of schedules

 No admissible schedule:

Adding one token on
e.g., A->C makes

CBA valid

CBA CBA CBA CBA CBA …

B C

A
1

1

1

1

1

1

REVIEW

- 12 -CS - ES

SDF Compiler

Task for an SDF compiler:
 Allocation of memory for the passing of data between nodes
 Scheduling of nodes onto processors in such a way that data is

available for a block when it is invoked

Assumptions on the SDF graph:
 The SDF graph is nonterminating and does not deadlock
 The SDF graph is connected

Goal:
 Development of a periodic admissible parallel schedule (PAPS)
 or a periodic admissible sequential schedule (PASS)

(admissible = correct schedule, finite amount of memory required)

REVIEW

- 13 -CS - ES

Does a PASS exist? REVIEW

- 14 -CS - ES

Does a PASS exist?

 A PSS (periodic sequential schedule) exists if rank (M) = s -1, where s is the
number if nodes in a graph.

 There is a v such that Mv = O where O is a vector full of zeros. v describes
the number of firings in each scheduling period.

REVIEW

- 15 -CS - ES

A PASS exists

 The rank of the matrix M = is s – 1 = 2 and v =

 A valid schedule is Φ = {a, b, c, c}, but not Φ = {b, a, c, c}

 The maximum buffer sizes for the arcs are b =< 1, 2, 2 >

REVIEW

- 16 -CS - ES

A PASS does not exist

 The graph has sample rate inconsistencies.

 A schedule for the graph will result in unbounded buffer sizes.

 No PASS can be found (rank (M) = s = 3).

REVIEW

- 17 -CS - ES

PAPS

 Assumption: Block 1 : 1 time unit
Block 2 : 2 time units
Block 3 : 3 time units

Trivial Case - All computations are scheduled on same processor

REVIEW

- 18 -CS - ES

PAPS

 The performance can be improved, if a schedule is constructed that exploits
the potential parallelism in the SDF-graph. Here the schedule covers one
single period.

Single Period Schedule

REVIEW

- 19 -CS - ES

PAPS

 The performance can be further improved, if the schedule is constructed over
two periods.

Double Period Schedule

REVIEW

- 20 -CS - ES

Limitations of the Model

 Asynchronous graphs do exist in digital signal processing. A
solution is to divide the graph into synchronous subgraphs
and to schedule these graphs.

 The SDF model does not reflect the real-time nature of the
connections to the real time world.

 In the construction of a PAPS the run-time of each node is
assumed to be data-independent, which may not be the case.
In hard real-time systems scheduling must also perform with
worst case data, which thus can be taken as time for the
scheduling of a node.

- 21 -CS - ES

Scheduling Choices

 SDF Scheduling Theorem guarantees a schedule will be
found if it exists

 Systems often have many possible schedules

 How can we use this flexibility?
 Reduced code size
 Reduced buffer sizes

- 22 -CS - ES

SDF Code Generation

 Often done with prewritten blocks

 For traditional DSP, handwritten implementation of large
functions (e.g., FFT)

 One copy of each block’s code made for each
appearance in the schedule

- 23 -CS - ES

Code Generation

 In this simple-minded approach, the schedule
BBBCDDDDAA

would produce code like
B;
B;
B;
C;
D;
D;
D;
D;
A;
A;

- 24 -CS - ES

Looped Code Generation

 Obvious improvement: use loops

 Rewrite the schedule in “looped” form:
(3 B) C (4 D) (2 A)

 Generated code becomes
for (i = 0 ; i < 3; i++) B;
C;
for (i = 0 ; i < 4 ; i++) D;
for (i = 0 ; i < 2 ; i++) A;

- 25 -CS - ES

- 26 -CS - ES

Conclusion SDF

 The SDF model is very useful for regular DSP applications

 Used for: simulation, scheduling, memory allocation, code
generation for Digital Signal Processors (HW and SW)

 There is a mathematical framework to calculate a PASS or a
PAPS and to determine the maximum size of buffers, if a
PASS/PAPS exists

 The work on SDF can be used to derive single and multiple
processor implementations

- 27 -CS - ES

Summary dataflow

 Communication exclusively through FIFOs
 Kahn process networks

 blocking read, nonblocking write
 deterministic
 schedulability undecidable
 Parks‘ scheduling algorithm

 SDF
 fixed token consumption/production
 compile-time scheduling (no OS): balance equations

- 28 -CS - ES

Selected Models of computation

Communication/
local computations

Shared
memory

Message passing
Synchronous | Asynchronous

Undefined
components

Plain text, use cases
| (Message) sequence charts

Communicating finite
state machines

StateCharts SDL

Data flow (Not useful) Kahn networks,
SDF

Petri nets C/E nets, P/T nets, …

Discrete event (DE)
model

VHDL*,
Verilog*,
SystemC*, …

Only experimental systems, e.g.
distributed DE in Ptolemy

Imperative (Von
Neumann) model

C, C++, Java C, C++, Java with libraries
CSP, ADA |

* Classification based on the implementation of HDLs

- 29 -CS - ES

Imperative (von-Neumann) model

 The von-Neumann model reflects the principles
of operation of standard computers:

 Sequential execution of instructions
(sequential control flow, fixed sequence of operations)

 Possible branches
 Partitioning of applications into threads
 In most cases:

• Context switching between threads, frequently based on
pre-emption

• Access to shared memory

- 30 -CS - ES

From implementation concepts
to programming models

 Example languages
 Machine languages (binary)
 Assembly languages (mnemonics)
 Imperative languages providing a limited abstraction of

machine languages (C, C++, Java, ….)

 Threads/processes
 Initially available only as entities managed by the operating

system
 Made available to the programmer as well
 Languages initially not designed for communication,

availability of threads made synchronization and
communication a must.

- 31 -CS - ES

Models vs. languages

 How can we (precisely) capture behavior?
 We may think of languages (C, C++), but computation model is the

key

 Computation models describe system behavior
 Conceptual notion, e.g., recipe, sequential program

 Languages capture models
 Concrete form, e.g., English, C

Models

Languages

Recipe

SpanishEnglish Japanese

Poetry Story Sequent.
program

C++C Java

State
machine

Data-
flow

Recipes vs. English Sequential programs vs. C

- 32 -CS - ES

Models vs. languages

 Variety of languages can capture one model
 E.g., sequential program model  C,C++, Java

 One language can capture variety of models
 E.g., C++ → sequential program model, object-oriented model, state machine

model

 Certain languages better at capturing certain computation models

Models

Languages

Recipe

SpanishEnglish Japanese

Poetry Story Sequent.
program

C++C Java

State
machine

Data-
flow

Recipes vs. English Sequential programs vs. C

- 33 -CS - ES

(Other) Languages and Models

 UML (Unified Modelling Language) [Rational 1997]
“systematic” approach to support the first phases of the
design process

 UML 1.xx not designed for embedded systems
UML 2.xx supports real-time applications

 several diagram types included
9 (UML 1.4)
13 (UML 2.0)
in particular variants of
StateCharts, MSCs, Petri Nets (called acticity diagrams)

- 34 -CS - ES

Java
Java 2 Micro Edition (J2ME)
CardJava
Real-time specification for Java (JSR-1), see
//www.rtj.org

Verilog

 HW description language competing with VHDL
 More popular in the US (VHDL common in Europe)

- 35 -CS - ES

Many other languages

 Pearl: Designed in Germany for process control
applications. Dating back to the 70s. Popular in Europe.

 Chill: Designed for telephone exchange stations.
Based on PASCAL.

 IEC 60848, STEP 7:
Process control languages using graphical elements

- 36 -CS - ES

Introduction - Assembly

IEC 60848, STEP 7:
Process control languages using graphical elements

- 37 -CS - ES

Architecture Design – Models

- 38 -CS - ES

Specification

 Formal specification of the desired functionality and the
structure (architecture) of an embedded systems is a
necessary step for using computer aided design methods.

 There exist many different formalisms and models of
computation

 Now:
Relevant models for the architecture
level (hardware synthesis).

- 39 -CS - ES

Task graphs or dependency graph (DG)

 Def.: A dependence graph is a directed graph G=(V,E) in
which E  V  V is a partial order.

 If (v1, v2)  E, then v1 is called an immediate predecessor
of v2 and v2 is called an immediate successor of v1.

Nodes are assumed to be
a „program“ described in
some programming
language, e.g. C or Java.

Sequence
constraint

- 40 -CS - ES

Dependence Graph (DG)

 A dependence graph describes order relations for the execution of single
operations or tasks. Nodes correspond to tasks or operations, edges
correspond to relations („executed after“).

 Usually, a dependence graph describes a partial ordering between
operations and therefore, leaves freedom for scheduling (parallel or
sequential). It represents parallelism in a program but no branches in
control flow.

 A dependence graph is acyclic.

 Often, there are additional quantities associated to edges or nodes such as
 execution times, deadlines, arrival times
 communication demand

- 41 -CS - ES

Single Assignment Form

Basic block dependence graph

x = a + b;
y = c - d;
z = x * y;
y = b + d;

Single assignment form

x = a + b;
y = c - d;
z = x * y;
y1 = b + d;

-

a b
d

* +

y

z y1

c

x

+

sequential program optimized hardware

- 42 -CS - ES

Dependence graph (DG)
xl = x + dx;
ul = u – (3*x*u*dx) – (3*y*dx);
yl = y + u*dx;
c = xl < a;

* *

*

-

*

*

-

* +

3 x u dx 3 y u dx dxx

+ <

a
xl

ydx

y1 cu

u1

- 43 -CS - ES

Control-Data Flow Graph (CDFG)

 Goal:
 Description of control structures (for example branches) and data dependencies.

 Applications:
 Describing the semantics of programming languages.
 Internal representation in compilers for hardware and software.

 Representation:
 Combination of control flow (sequential state machine) and dependence representation.
 Many variants exist.

- 44 -CS - ES

CDFG

- 45 -CS - ES

Control-Data Flow Graph (CDFG)

 Control Flow Graph:
 It corresponds to a finite state machine, which represents the sequential control flow in a

program.

 Branch conditions are very often associated to the outgoing edges of a node.

 The operations to be executed within a state (node) are associated in form of a
dependence graph.

 Dependence Graph (also called Data Flow Graph DFG):

 NOP (no operation) operations represent the start point and end point of the execution. This
form of a graph is called a polar graph: it contains two distinguished nodes, one without
incoming edges, the other one without outgoing edges.

- 46 -CS - ES

Sequence Graph (SG)

 A sequence graph is a hierarchy of directed graphs. A generic element of
the graph is a dependence graph with the following properties:

 It contains two kinds of nodes: (a) operations or tasks and (b) hierarchy nodes.

 Each graph is acyclic and polar with two distinguished nodes: the start node and the end
node. No operation is assigned to them (NOP).

 There are the following hierarchy nodes: (a) module call (CALL) (b) branch (BR) and (c)
iteration (LOOP).

- 47 -CS - ES

Sequence Graph (SG)

Example - CALL:

x := a * b;
y := x * c;
z := a + b;
submodul(a, z);

PROCDEDURE submodul(m, n) IS
p := m + n;
q := m * n;
END submodul

- 48 -CS - ES

Sequence Graph (SG)

Example - BR:

x := a * b;
y := x * c;
z := a + b;
IF z > 0 THEN

p := m + n;
q := m * n;

END IF

- 49 -CS - ES

Sequence Graph (SG)

Example iteration (differential equation) - LOOP:
int diffeq(int x, int y, int u, int dx, int a)

{ int x1, u1, y1;
while (x < a) {

x1 = x + dx;
u1 = u - (3 * x * u * dx) - (3 * y * dx);
y1 = y + u * dx;
x = x1; u = u1; y = y1;

}
return y;

}

- 50 -CS - ES

Sequence Graph (SG)

- 51 -CS - ES
51

Unit Branch

Loop Call

Sequence Graph (SG)

- 52 -CS - ES

Sequence graph

 Hierarchy of chained units
 units model data flow
 hierarchy models control flow

 Special nodes
 start/end nodes: NOP (no operation)
 branch nodes (BR)
 iteration nodes (LOOP)
 module call nodes (CALL)

 Attributes
 nodes: computation times, cost, ...
 edges: conditions for branches and iterations

52

- 53 -CS - ES

Selected Models of computation

Communication/
local computations

Shared
memory

Message passing
Synchronous | Asynchronous

Undefined
components

Plain text, use cases
| (Message) sequence charts

Communicating finite
state machines

StateCharts SDL

Data flow (Not useful) Kahn networks,
SDF

Petri nets C/E nets, P/T nets, …

Discrete event (DE)
model

VHDL*,
Verilog*,
SystemC*, …

Only experimental systems, e.g.
distributed DE in Ptolemy

Von Neumann model C, C++,
Java

C, C++, Java with libraries
CSP, ADA |

* Classification based on implementation

- 54 -CS - ES

Hardware/System description languages

 VDHL
 VHDL-AMS

 SystemC
 TLM

- 55 -CS - ES

Discrete event semantics

 Basic discrete event (DE) semantics
 Queue of future actions, sorted by time
 Loop:

• Fetch next entry from queue
• Perform function as listed in entry

– May include generation of new entries
 Until termination criterion = true

a
b
c

time
actiona:=5 b:=7 c:=8 a:=6 a:=9

queue

5 10 13 15 195
7
8

6

- 56 -CS - ES

Methods for executing algorithms

Advantages:
•very high
performance and
efficient

Disadvantages:
•not flexible (can’t
be altered after
fabrication)

• expensive

Hardware
(Application Specific
Integrated Circuits)

Software-programmed
processors

Advantages:
•software is very
flexible to change

Disadvantages:
•performance can
suffer if clock is not
fast

•fixed instruction set
by hardware

Reconfigurable
computing

Advantages:
•fills the gap
between hardware
and software

•much higher
performance than
software

•higher level of
flexibility than
hardware

- 57 -CS - ES

Basic Design Methodology

Requirements

SimulateRTL Model

Gate-level
Model

Synthesize

Simulate Test Bench

ASIC or FPGA Place & Route

Timing
Model Simulate

