Embedded Systems
Synchronous dataflow

- Multiple tokens consumed and produced per firing

- Synchronous dataflow model takes advantage of this
 - Each edge labeled with number of tokens consumed/produced each firing
 - Can statically schedule nodes, so can easily use sequential program model
 - Don’t need real-time operating system and its overhead

- Algorithms developed for scheduling nodes into “single-appearance” schedules
 - Only one statement needed to call each node’s associated procedure
 - Allows procedure inlining without code explosion, thus reducing overhead even more
Synchronous DataFlow

SDF firing rules:

- **Actor enabling** = each incoming arc carries at least *weight* tokens
- **Actor execution** = atomic consumption/production of tokens by an enabled actor
 - i.e., *consume weight tokens on each incoming arcs and produce weight tokens on each outgoing arc*
- **Delay** is an initial token load on an arc.
Parallel Scheduling of SDF Models

SDF is suitable for automated mapping onto parallel processors and synthesis of parallel circuits.

- Sequential periodic admissible sequential schedule (PASS)
- Parallel periodic admissible parallel schedule (PAPS)

(admissible = correct schedule, finite amount of memory required)
Delays

- Kahn processes often have an *initialization phase*

- SDF doesn’t allow this because *rates are not always constant*

- Alternative: an SDF system *may start with tokens in its buffers*

- These *behave like delays* (signal-processing)

- Delays are sometimes necessary to avoid deadlock
SDF Scheduling

- Schedule can be determined completely before the system runs

- Two steps:

 1. Establish relative execution rates by solving a system of linear equations

 2. Determine periodic schedule by simulating system for a single round
Balance equations

- Number of produced tokens must equal number of consumed tokens on every edge

- Repetitions (or firing) vector v_S of schedule S: number of firings of each actor in S
 - $v_S(A) \, n_p = v_S(B) \, n_c$
 - must be satisfied for each edge
Balance equations

\[M \nu_S = 0 \]

iff \(S \) is periodic

Full rank (as in this case)

- no non-zero solution
- no periodic schedule

(too many tokens accumulate on A->B or B->C)

\[
M = \begin{bmatrix}
3 & -1 & 0 \\
0 & 1 & -1 \\
2 & 0 & -1 \\
2 & 0 & -1 \\
\end{bmatrix}
\]

topology matrix

the \((c, r)\)th entry in the matrix is the amount of data produced by node \(c \) on arc \(r \) each time it is involved
Balance equations

- Non-full rank
 - infinite solutions exist
- Any multiple of \(v_S = \begin{pmatrix} 1 & 2 & 2 \end{pmatrix} \) satisfies the balance equations
- ABCBC and ABBCC are minimal valid schedules

\[
M = \begin{pmatrix}
2 & -1 & 0 \\
0 & 1 & -1 \\
2 & 0 & -1 \\
2 & 0 & -1
\end{pmatrix}
\]
Admissibility of schedules

- No admissible schedule: BACBA, then deadlock...
- Adding one token on A->C makes BACBACBA valid
- Making a periodic schedule admissible is always possible, but changes specification...
Admissibility of schedules

- No admissible schedule:

 Adding one token on e.g., A->C makes CBA valid

 CBA CBA CBA CBA CBA CBA ...

- REVIEW
SDF Compiler

Task for an SDF compiler:

- Allocation of memory for the passing of data between nodes
- Scheduling of nodes onto processors in such a way that data is available for a block when it is invoked

Assumptions on the SDF graph:

- The SDF graph is nonterminating and does not deadlock
- The SDF graph is connected

Goal:

- Development of a periodic admissible parallel schedule (PAPS)
- or a periodic admissible sequential schedule (PASS)

(admissible = correct schedule, finite amount of memory required)
Does a PASS exist?

- The SDF graph is described by the topology matrix

\[
M = \begin{bmatrix}
c & -e & 0 \\
d & 0 & -f \\
0 & -i & g \\
\end{bmatrix}
\]

- The entry of row \(r \) and column \(c \) is the number of tokens produced (positive number) or consumed (negative number) by node \(c \) on arc \(r \).

- Connections to the outside world are not considered.
Does a PASS exist?

- A PSS (periodic sequential schedule) exists if rank \((M) = s - 1\), where \(s\) is the number of nodes in a graph.

- There is a \(v\) such that \(Mv = O\) where \(O\) is a vector full of zeros. \(v\) describes the number of firings in each scheduling period.
A PASS exists

- The rank of the matrix \(M = \begin{bmatrix} \end{bmatrix} \) is \(s - 1 = 2 \) and \(v = \begin{bmatrix} \end{bmatrix} \)

- A valid schedule is \(\Phi = \{a, b, c, c\} \), but not \(\Phi = \{b, a, c, c\} \)

- The maximum buffer sizes for the arcs are \(b = \langle 1, 2, 2 \rangle \)
A PASS does not exist

- The graph has sample rate inconsistencies.
- A schedule for the graph will result in unbounded buffer sizes.
- No PASS can be found \(\text{rank } (M) = s = 3 \).
Assumption:
- Block 1: 1 time unit
- Block 2: 2 time units
- Block 3: 3 time units

Trivial Case - All computations are scheduled on same processor
The performance can be improved, if a schedule is constructed that exploits the potential parallelism in the SDF-graph. Here the schedule covers one single period.
The performance can be further improved, if the schedule is constructed over two periods.
Limitations of the Model

- **Asynchronous graphs** do exist in digital signal processing. A solution is to **divide the graph into synchronous subgraphs** and to schedule these graphs.

- The SDF model does not reflect the **real-time nature of the connections to the real time world**.

- In the construction of a PAPS the run-time of each node is assumed to be **data-independent**, which may not be the case. In hard real-time systems scheduling must also perform with **worst case data**, which thus can be taken as time for the scheduling of a node.
Scheduling Choices

- SDF Scheduling Theorem guarantees a schedule will be found if it exists

- Systems often have many possible schedules

- How can we use this flexibility?
 - Reduced code size
 - Reduced buffer sizes
SDF Code Generation

- Often done with prewritten blocks
- For traditional DSP, handwritten implementation of large functions (e.g., FFT)
- One copy of each block’s code made for each appearance in the schedule
Code Generation

- In this simple-minded approach, the schedule BBBCDDDDAA

would produce code like

```
B;B;B;C;D;D;D;D;A;A;
```
Looped Code Generation

- Obvious improvement: use loops

- Rewrite the schedule in “looped” form:

 $$(3 \text{ B}) \text{ C} (4 \text{ D}) (2 \text{ A})$$

- Generated code becomes

  ```
  for ( i = 0 ; i < 3; i++) B;
  C;
  for ( i = 0 ; i < 4 ; i++) D;
  for ( i = 0 ; i < 2 ; i++) A;
  ```
Suppose that C requires 8 data values from A to execute. Suppose further that C takes much longer to execute than A or B. Then a schedule might look like this:
Conclusion SDF

- The SDF model is very useful for regular DSP applications

- Used for: simulation, scheduling, memory allocation, code generation for Digital Signal Processors (HW and SW)

- There is a mathematical framework to calculate a PASS or a PAPS and to determine the maximum size of buffers, if a PASS/PAPS exists

- The work on SDF can be used to derive single and multiple processor implementations
Summary dataflow

- Communication exclusively through FIFOs
- Kahn process networks
 - blocking read, nonblocking write
 - deterministic
 - schedulability undecidable
 - Parks‘ scheduling algorithm
- SDF
 - fixed token consumption/production
 - compile-time scheduling (no OS): balance equations
Selected Models of computation

<table>
<thead>
<tr>
<th>Communication/ local computations</th>
<th>Shared memory</th>
<th>Message passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undefined components</td>
<td>Plain text, use cases</td>
<td>Synchronous</td>
</tr>
<tr>
<td>Communicating finite state machines</td>
<td>StateCharts</td>
<td>SDL</td>
</tr>
<tr>
<td>Data flow</td>
<td>(Not useful)</td>
<td>Kahn networks, SDF</td>
</tr>
<tr>
<td>Petri nets</td>
<td></td>
<td>C/E nets, P/T nets, …</td>
</tr>
<tr>
<td>Discrete event (DE) model</td>
<td>VHDL*, Verilog*, SystemC*, …</td>
<td>Only experimental systems, e.g. distributed DE in Ptolemy</td>
</tr>
<tr>
<td>Imperative (Von Neumann) model</td>
<td>C, C++, Java</td>
<td>C, C++, Java with libraries</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CSP, ADA</td>
</tr>
</tbody>
</table>
Imperative (von-Neumann) model

- The von-Neumann model reflects the principles of operation of standard computers:
 - Sequential execution of instructions (sequential control flow, fixed sequence of operations)
 - Possible branches
 - Partitioning of applications into threads
 - In most cases:
 - Context switching between threads, frequently based on pre-emption
 - Access to shared memory
From implementation concepts to programming models

- Example languages
 - Machine languages (binary)
 - Assembly languages (mnemonics)
 - Imperative languages providing a limited abstraction of machine languages (C, C++, Java, …)

- Threads/processes
 - Initially available only as entities managed by the operating system
 - Made available to the programmer as well
 - Languages initially not designed for communication, availability of threads made synchronization and communication a must.
Models vs. languages

- How can we (precisely) capture behavior?
 - We may think of languages (C, C++), but computation model is the key

- Computation models describe system behavior
 - Conceptual notion, e.g., recipe, sequential program

- Languages capture models
 - Concrete form, e.g., English, C
Models vs. languages

- **Variety of languages can capture one model**
 - E.g., sequential program model → C, C++, Java

- **One language can capture variety of models**
 - E.g., C++ → sequential program model, object-oriented model, state machine model

- **Certain languages better at capturing certain computation models**
(Other) Languages and Models

- UML (Unified Modelling Language) [Rational 1997]
 “systematic” approach to support the first phases of the design process

 - UML 1.xx not designed for embedded systems
 UML 2.xx supports real-time applications

 - several diagram types included
 9 (UML 1.4)
 13 (UML 2.0)
 in particular variants of StateCharts, MSCs, Petri Nets (called acticity diagrams)
Java

Java 2 Micro Edition (J2ME)
CardJava
Real-time specification for Java (JSR-1), see //www.rtj.org

Verilog

- HW description language competing with VHDL
- More popular in the US (VHDL common in Europe)
Many other languages

- **Pearl**: Designed in Germany for process control applications. Dating back to the 70s. Popular in Europe.
- **Chill**: Designed for telephone exchange stations. Based on PASCAL.
- **IEC 60848, STEP 7**: Process control languages using graphical elements
Introduction - Assembly

IEC 60848, STEP 7:
Process control languages using graphical elements

CS - ES
Architecture Design – Models
Specification

- **Formal specification** of the desired functionality and the structure (architecture) of an embedded systems is a necessary step for using computer aided design methods.

- There exist **many different formalisms** and models of computation

- **Now:** Relevant models for the architecture level (hardware synthesis).
Task graphs or dependency graph (DG)

- Def.: A **dependence graph** is a directed graph $G=(V,E)$ in which $E \subseteq V \times V$ is a partial order.

- If $(v1, v2) \in E$, then $v1$ is called an **immediate predecessor** of $v2$ and $v2$ is called an **immediate successor** of $v1$.

Nodes are assumed to be a "program" described in some programming language, e.g. C or Java.
Dependence Graph (DG)

- A dependence graph describes order relations for the execution of single operations or tasks. Nodes correspond to tasks or operations, edges correspond to relations ("executed after").

- Usually, a dependence graph describes a partial ordering between operations and therefore, leaves freedom for scheduling (parallel or sequential). It represents parallelism in a program but no branches in control flow.

- A dependence graph is acyclic.

- Often, there are additional quantities associated to edges or nodes such as:
 - execution times, deadlines, arrival times
 - communication demand
Single Assignment Form

Basic block

\[
\begin{align*}
x &= a + b; \\
y &= c - d; \\
z &= x \times y; \\
y &= b + d;
\end{align*}
\]

Single assignment form

\[
\begin{align*}
x &= a + b; \\
y &= c - d; \\
z &= x \times y; \\
y1 &= b + d;
\end{align*}
\]

sequential program → optimized hardware
Dependence graph (DG)

\[x_1 = x + \text{dx}; \]
\[u_1 = u - (3xu*\text{dx}) - (3yu*\text{dx}); \]
\[y_1 = y + u*\text{dx}; \]
\[c = x_1 < a; \]
Control-Data Flow Graph (CDFG)

- **Goal:**
 - Description of control structures (for example branches) and data dependencies.

- **Applications:**
 - Describing the semantics of programming languages.
 - Internal *representation in compilers* for hardware and software.

- **Representation:**
 - Combination of control flow (sequential state machine) and dependence representation.
 - Many variants exist.
a) VHDL-Code:

\[\cdots \]
\[s := k; \quad \text{--1} \]
\[\text{LOOP} \]
\[\text{EXIT WHEN } k > 9; \quad \text{--2} \]
\[\text{IF (ok = TRUE)} \quad \text{--3} \]
\[j := j + 1; \quad \text{--4} \]
\[\text{ELSE} \]
\[j := 0; \quad \text{--5} \]
\[\text{ok := TRUE;} \quad \text{--6} \]
\[\text{END IF;} \]
\[k := k + 1; \quad \text{--7} \]
\[\text{END LOOP;} \]
\[r := j; \quad \text{--8} \]
\[\cdots \]
Control-Data Flow Graph (CDFG)

- **Control Flow Graph:**
 - It corresponds to a **finite state machine**, which represents the sequential control flow in a program.
 - **Branch conditions** are very often associated to the outgoing edges of a node.
 - The operations to be executed within a state (node) are associated in form of a **dependence graph**.

- **Dependence Graph (also called Data Flow Graph DFG):**
 - NOP (no operation) operations represent the start point and end point of the execution. This form of a graph is called a **polar graph**: it contains two distinguished nodes, one without incoming edges, the other one without outgoing edges.
Sequence Graph (SG)

- A **sequence graph** is a **hierarchy** of directed graphs. A generic element of the graph is a **dependence graph** with the following properties:

 - It contains **two kinds** of nodes: (a) **operations or tasks** and (b) **hierarchy nodes**.

 - Each graph is **acyclic and polar** with two distinguished nodes: the start node and the end node. No operation is assigned to them (NOP).

 - There are the following **hierarchy nodes**: (a) module call (CALL) (b) branch (BR) and (c) iteration (LOOP).
Sequence Graph (SG)

Example - CALL:

\[
x := a \times b; \\
y := x \times c; \\
z := a + b; \\
\text{submodul}(a, z);
\]

```
PROCEDURE submodul(m, n) IS 
  p := m + n; 
  q := m \times n; 
END submodul
```
Sequence Graph (SG)

Example - BR:

\[
x := a \times b;
\]
\[
y := x \times c;
\]
\[
z := a + b;
\]
\[
\text{IF } z > 0 \text{ THEN}
\]
\[
p := m + n;
\]
\[
q := m \times n;
\]
\[
\text{END IF}
\]
Example iteration (differential equation) - LOOP:

```c
int diffeq(int x, int y, int u, int dx, int a)
{
    int x1, u1, y1;
    while ( x < a ) {
        x1 = x + dx;
        u1 = u - (3 * x * u * dx) - (3 * y * dx);
        y1 = y + u * dx;
        x = x1; u = u1; y = y1;
    }
    return y;
}
```
Sequence Graph (SG)
Sequence Graph (SG)

Unit

\[w = a + b; \]
\[x = w \times c; \]
\[y = b \times b; \]
\[z = w - c; \]

Branch

\[c = a < b; \]
\[\text{IF} (c) \text{ THEN} \]
\[p = m + n; \]
\[q = m \times n; \]
\[\text{ENDIF} \]
\[x = a - b; \]

Loop

\[d = 2 \times x; \]
\[\text{WHILE} (d < 5) \text{ DO} \]
\[\quad \text{write}(d); \]
\[\quad d = d + 1; \]
\[\text{ENDWHILE} \]

Call

\[d = x - y; \]
\[e = d \times x; \]
\[\text{sub}(x, y); \]
\[\ldots \]

PROCEDURE sub \((m, n)\)
\[p = m + n; \]
\[q = m \times n; \]
\[\text{END sub} \]
Sequence graph

- Hierarchy of chained units
 - units model data flow
 - hierarchy models control flow

- Special nodes
 - start/end nodes: NOP (no operation)
 - branch nodes (BR)
 - iteration nodes (LOOP)
 - module call nodes (CALL)

- Attributes
 - nodes: computation times, cost, ...
 - edges: conditions for branches and iterations
Selected Models of computation

<table>
<thead>
<tr>
<th>Communication/local computations</th>
<th>Shared memory</th>
<th>Message passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undefined components</td>
<td>Plain text, use cases</td>
<td>Synchronous (Message) sequence charts</td>
</tr>
<tr>
<td>Communicating finite state machines</td>
<td>StateCharts</td>
<td>SDL</td>
</tr>
<tr>
<td>Data flow</td>
<td>(Not useful)</td>
<td>Kahn networks, SDF</td>
</tr>
<tr>
<td>Petri nets</td>
<td></td>
<td>C/E nets, P/T nets, …</td>
</tr>
<tr>
<td>Discrete event (DE) model</td>
<td>VHDL*, Verilog*, SystemC*, …</td>
<td>Only experimental systems, e.g. distributed DE in Ptolemy</td>
</tr>
<tr>
<td>Von Neumann model</td>
<td>C, C++, Java</td>
<td>C, C++, Java with libraries CSP, ADA</td>
</tr>
</tbody>
</table>

* Classification based on implementation
Hardware/System description languages

- VDHL
 - VHDL-AMS

- SystemC
 - TLM
Discrete event semantics

- Basic discrete event (DE) semantics
 - Queue of future actions, sorted by time
 - Loop:
 - Fetch next entry from queue
 - Perform function as listed in entry
 - May include generation of new entries
 - Until termination criterion = true

```
queue
6  a
7  b
8  c
```

```
time
5  10  13  15  19
a:=5  b:=7  c:=8  a:=6  a:=9
```
Methods for executing algorithms

Hardware (Application Specific Integrated Circuits)

Advantages:
• very high performance and efficient

Disadvantages:
• not flexible (can’t be altered after fabrication)
• expensive

Reconfigurable computing

Advantages:
• fills the gap between hardware and software
• much higher performance than software
• higher level of flexibility than hardware

Software-programmed processors

Advantages:
• software is very flexible to change

Disadvantages:
• performance can suffer if clock is not fast
• fixed instruction set by hardware
Basic Design Methodology

1. Requirements
2. RTL Model
3. Synthesize
4. Gate-level Model
5. Place & Route
6. Timing Model
7. ASIC or FPGA
8. Simulate
9. Test Bench