
- 1 -CS - ES

Embedded Systems

- 2 -CS - ES

Message Sequence Charts

REVIEW

- 3 -CS - ES

Message Sequence Charts

 Message Sequence Charts (MSC) is a language to
describe the interaction between a number of
independent message-passing instances.

 Defined by ITU (International Telecommunication Union)
- Z.120 recommendation

 MSC is
 a scenario language
 graphical
 formal
 practical
 widely applicable

REVIEW

- 4 -CS - ES

MSC

 In telecommunication industry, MSCs are the first choice to describe
example traces of the system under development. MSCs are used
throughout the whole protocol life cycle from requirements analysis
to testing.

 To define longer traces hierarchically, simple MSCs can be
composed by operators in high-level MSC (HMSC).

 Message Sequence Charts may be used for requirement
specification, simulation and validation, test-case specification and
documentation of real-time systems.

REVIEW

- 5 -CS - ES

Message sequence charts (MSC)

 Graphical means for representing schedules; time used
vertically, “geographical” distribution horizontally.

REVIEW

- 6 -CS - ES

Basic MSC in a nutshell

User AC System

Code

OK

msc User_accepted

UnlockCard out

Idle

Door unlocked

MSC diagram

MSC heading

Condition
no predicate logic,

merely a label

Output event

Input event

Instance

Message to
the

environment

Instance end

REVIEW

- 7 -CS - ES

Timer set and timeout

• User is accepted forget to push the door

• AC system will detect this through the expiration
of the timer Lock

REVIEW

- 8 -CS - ES

Preferred situation REVIEW

- 9 -CS - ES

MSC reference

• In almost all description/programming/specification
languages there is a way to isolate subparts of the
description in a separate named construct
(procedures, functions, classes, packages)

• In MSC there are MSCs which can be referred from
other MSCs.

REVIEW

- 10 -CS - ES

MSC reference

• Assume that the scenario where the user is accepted is
part of a larger context where there is an automatic
door. When the door is unlocked it automatically opens.

• The MSC reference symbol is a box with rounded
corners.

REVIEW

- 11 -CS - ES

HMSC (High Level MSC)

User accepted

Idle

Unlocked_reset Unlocked_timeout

Door unlocked

Unlocked_unclosed

User rejected

msc ACsystemOverview

HMSC Start

MSC Reference

Condition

Alternative

Loop

Conne
ction
Point

REVIEW

- 12 -CS - ES

Data in MSC-2000

 MSC has no data language of its own!

 MSC has parameterized data languages such that

 fragments of your favorite (data) language can be used
• C, C++, SDL, Java, ...

 MSC can be parsed without knowing the details of the chosen
data language

 the interface between MSC and the chosen data language is
given in a set of interface functions

REVIEW

- 13 -CS - ES

Data Flow Models

REVIEW

- 14 -CS - ES

Data flow modeling

 Def.: The process of identifying, modeling and
documenting how data moves around an information
system.

Data flow modeling examines
 processes (activities that transform data from one form to

another),
 data stores (the holding areas for data),
 external entities (what sends data into a system or receives data

from a system, and
 data flows (routes by which data can flow).

REVIEW

- 15 -CS - ES

Dataflow model
 Nodes represent transformations

 May execute concurrently

 Edges represent flow of tokens (data) from one node to
another
 May or may not have token at any given time

 When all of node’s input edges have at least one token,
node may fire

 When node fires, it consumes input tokens processes
transformation and generates output token

 Nodes may fire simultaneously

 Several commercial tools support graphical languages for
capture of dataflow model
 Can automatically translate to concurrent process model for

implementation
 Each node becomes a process

modulate convolve

transform

A B C D

Z

Nodes with more complex
transformations

t1 t2

+ –

*

A B C D

Z

Nodes with arithmetic
transformations

t1 t2

Z = (A + B) * (C - D)

REVIEW

- 16 -CS - ES

Philosophy of Dataflow Languages

 Drastically different way of looking at computation

 Von Neumann imperative language style: program counter
controls everything

 Dataflow language: movement of data the priority

 Scheduling responsibility of the system, not the programmer

REVIEW

- 17 -CS - ES

Applications of Dataflow

 signal-processing applications

 Anything that deals with a continuous stream of data

 Becomes easy to parallelize

 Buffers typically used for signal processing applications
anyway

REVIEW

- 18 -CS - ES

Kahn Process Networks

 Proposed by Kahn in 1974 as a general-purpose scheme for
parallel programming

 Theoretical foundation for dataflow
 Unique attribute: deterministic

…
Send();

…

…
Wait();

…

REVIEW

- 19 -CS - ES

Properties of Kahn process networks (2)

 There is only one sender per channel.
 A process cannot check whether data is available before

attempting a read.
 A process cannot wait for data for more than one port at a time.
 Therefore, the order of reads depends only on data, not on the

arrival time.
 Therefore, Kahn process networks are deterministic (!); for a

given input, the result will always the same, regardless of the
speed of the nodes.

This is the
key beauty
of KPNs!

REVIEW

- 20 -CS - ES

Kahn Process Networks

 Key idea:

Reading an empty channel blocks until data is available

 No other mechanism for sampling communication
channel’s contents

 Can’t check to see whether buffer is empty
 Can’t wait on multiple channels at once

REVIEW

- 21 -CS - ES

Sample parallel program S

(1) … channel declation

processes f, g, h are declared

REVIEW

- 22 -CS - ES

A Kahn Process
 From Kahn’s original 1974 paper

process f(in int u, in int v, out int w)
{
int i; bool b = true;
for (;;) {
i = b ? wait(u) : wait(v);
printf("%i\n", i);
send(i, w);
b = !b;

}
}

f

u

v

w

Process alternately reads
from u and v, prints the data

value, and writes it to w

What does this do?

REVIEW

- 23 -CS - ES

A Kahn Process

 From Kahn’s original 1974 paper:

process f(in int u, in int v, out int w)
{
int i; bool b = true;
for (;;) {
i = b ? wait(u) : wait(v);
printf("%i\n", i);
send(i, w);
b = !b;

}
}

Process
interface

includes FIFOs

wait() returns the next
token in an input FIFO,

blocking if it’s empty

send() writes a data
value on an output FIFO

REVIEW

- 24 -CS - ES

A Kahn Process

 From Kahn’s original 1974 paper:

process g(in int u, out int v, out int w)
{
int i; bool b = true;
for(;;) {
i = wait(u);
if (b) send(i, v); else send(i, w);
b = !b;

}
}

gu
v

w

Process reads from u and
alternately copies it to v and w

What does this do?

REVIEW

- 25 -CS - ES

A Kahn Process

 From Kahn’s original 1974 paper:

process h(in int u, out int v, int init)
{
int i = init;
send(i, v);
for(;;) {
i = wait(u);
send(i, v);

}
}

hu v

Process sends initial value,
then passes through values.

What does this do?

REVIEW

- 26 -CS - ES

Sample parallel program S

(1) … channel declation

processes f, g, h are declared

(6) … body of the main program:
- calling instances of the

processes
- actual names of the channels

are bound to the formal parameters
- infix operator par concurrent

activation of the processes

REVIEW

- 27 -CS - ES

A Kahn System

 What does this do?

fg

h
init = 0

h
init = 1

Emits a 1 then copies input to output

Emits a 0 then copies input to output

Prints an alternating sequence of 0’s and 1’s

T2 Z

T2

X

Y

REVIEW

- 28 -CS - ES

REVIEW

- 29 -CS - ES

Determinism

 Process: “continuous mapping” of input sequence to
output sequences

 Continuity: process uses prefix of input sequences to
produce prefix of output sequences. Adding more
tokens does not change the tokens already produced

 The state of each process depends on token values
rather than their arrival time

 Unbounded FIFO: the speed of the two processes
does not affect the sequence of data values

F
x1,x2,x3… y1,y2,y3…

REVIEW

- 30 -CS - ES

Synchronous Dataflow (SDF)
 Edward Lee and David Messerchmitt, Berkeley, 1987

Ptolemy System

 Restriction of Kahn Networks to allow compile-time
scheduling

 Basic idea: each process reads and writes a fixed number of
tokens each time it fires:

loop
read 3 A, 5 B, 1 C …compute…write 2 D, 1 E, 7 F

end loop

REVIEW

- 31 -CS - ES 31

Synchronous dataflow

 With digital signal-processors (DSPs), data flows at fixed
rate

ADC DACDSP

0110.. 1110..

REVIEW

- 32 -CS - ES 32

Synchronous dataflow
 Multiple tokens consumed and produced per firing

 Synchronous dataflow model takes advantage of this
 Each edge labeled with number of tokens

consumed/produced each firing
 Can statically schedule nodes, so can easily use sequential

program model
• Don’t need real-time operating system and its overhead

 Algorithms developed for scheduling nodes into “single-
appearance” schedules
 Only one statement needed to call each node’s associated

procedure
• Allows procedure inlining without code explosion, thus reducing

overhead even more

modulate convolve

transform

A B C D

Z

Synchronous dataflow

mt1 ct2

mA mB mC mD

tZ

tt1 tt2

t1 t2

REVIEW

- 33 -CS - ES

SDF and Signal Processing

 Restriction natural for multirate signal processing

 Typical signal-processing processes:

 Unit-rate
• Adders, multipliers

 Upsamplers (1 in, n out)
 Downsamplers (n in, 1 out)

- 34 -CS - ES

Asynchronous message passing:
Synchronous data flow (SDF)
 Asynchronous message passing=

tasks do not have to wait until output is accepted.
 Synchronous data flow =

all tokens are consumed at the same time.

SDF model allows static scheduling of token production and
consumption.

In the general case, buffers may be needed at edges.

- 35 -CS - ES

Synchronous DataFlow

 Actor enabling = each incoming arc carries at
least weight tokens

 Actor execution = atomic
consumption/production of tokens by an enabled
actor
 i.e., consume weight tokens on each incoming arcs and

produce weight tokens on each outgoing arc
 Delay is an initial token load on an arc.

SDF firing rules:

- 36 -CS - ES

SDF Example

AABAA
CC

BStatic
schedule:

- 37 -CS - ES

Parallel Scheduling of SDF Models

A

C

D

B

Sequential
periodic admissible sequential

schedule (PASS)

Parallel
periodic admissible parallel

schedule (PAPS)

SDF is suitable
for automated
mapping onto

parallel
processors and

synthesis of
parallel circuits.

(admissible = correct schedule, finite amount of memory required)

- 38 -CS - ES

SDF Scheduling Algorithm
Lee/Messerschmitt 1987

1. Establish relative execution rates
 Generate balance equations
 Solve for smallest positive integer vector q

2. Determine periodic schedule
 Form an arbitrarily ordered list of all nodes in the system
 Repeat:

• For each node in the list, schedule it if it is runnable,
trying each node once

• If each node has been scheduled qn times, stop.
• If no node can be scheduled, indicate deadlock.

Source: Lee/Messerschmitt, Synchronous Data Flow (1987)

- 39 -CS - ES

Multi-rate SDF System

 DAT (digital audio tape) -to-CD rate converter
 Converts a 44.1 kHz sampling rate to 48 kHz

1 1 2 3 2 7 8 7 5 1

Upsampler Downsampler

- 40 -CS - ES

SDF: restriction of Kahn networks

An SDF graph is a tuple (V, E, cons, prod, d) where
 V is a set of nodes (activities)
 E is a set of edges (buffers)
 cons: E N number of tokens consumed
 prod: E N number of tokens produced
 d: E N number of initial tokens

d: „delay“ (sample offset between input and output)

- 41 -CS - ES

Delays

 Kahn processes often have an initialization phase

 SDF doesn’t allow this because rates are not always
constant

 Alternative: an SDF system may start with tokens in its
buffers

 These behave like delays (signal-processing)

 Delays are sometimes necessary to avoid deadlock

- 42 -CS - ES

Example SDF System
 Finite Impulse Response

FIR Filter (all single-rate)

dup

*c0

dup

*c1

+

dup

*c2

+

dup

*c3

+

*c(N-1)

+

One-cycle delay
Duplicate

Constant
multiply

(filter
coefficient)

Adder

yn

xn

Yn = xn*c0 + xn-1*c1 + … + xn-(N-1)*c(N-1)

…

…

…

- 43 -CS - ES

SDF Scheduling

 Schedule can be determined completely before the
system runs

 Two steps:

1. Establish relative execution rates by solving a system
of linear equations

2. Determine periodic schedule by simulating system for a
single round

- 44 -CS - ES

SDF Scheduling

 Goal: a sequence of process firings that:
 Runs each process at least once in proportion to its rate
 Avoids underflow

• no process fired unless all tokens it consumes are available
 Returns the number of tokens in each buffer to their initial state

 Result: the schedule can be executed repeatedly without
accumulating tokens in buffers

- 45 -CS - ES

Balance equations

 Number of produced tokens must equal number of
consumed tokens on every edge

 Repetitions (or firing) vector vS of schedule S: number
of firings of each actor in S
 vS(A) np = vS(B) nc

must be satisfied for each edge

np nc
A B

- 46 -CS - ES

Balance equations

B C

A
3

1

1

1

2
2

1
1

 Balance for each edge:
 3 vS(A) - vS(B) = 0
 vS(B) - vS(C) = 0
 2 vS(A) - vS(C) = 0
 2 vS(A) - vS(C) = 0

- 47 -CS - ES

Balance equations

 M vS = 0
iff S is periodic
 Full rank (as in this case)

• no non-zero solution
• no periodic schedule

(too many tokens accumulate on A->B or B->C)

3 -1 0
0 1 -1
2 0 -1
2 0 -1

M =

B C

A
3

1

1

1

2
2

1
1

topology matrix

the (c, r)th entry in the
matrix is the amount of data
produced by node c on arc

r each time it is involved

- 48 -CS - ES

Balance equations

 Non-full rank
• infinite solutions exist

 Any multiple of vS = |1 2 2|T satisfies the balance
equations
 ABCBC and ABBCC are minimal valid schedules

2 -1 0
0 1 -1
2 0 -1
2 0 -1

M =

B C

A
2

1

1

1

2
2

1
1

- 49 -CS - ES

Static SDF scheduling

 Main SDF scheduling theorem (Lee ‘86):
 A connected SDF graph with n actors has a

periodic schedule iff its topology matrix M has rank
n-1
 If M has rank n-1 then there exists a unique

smallest integer solution vS to
M vS = 0

 Rank must be at least n-1 because we need
at least n-1 edges (connected-ness),
providing each a linearly independent row
 Admissibility is not guaranteed, and depends

on initial tokens on cycles

- 50 -CS - ES

Admissibility of schedules

 No admissible schedule:
BACBA, then deadlock…
 Adding one token on A->C makes

BACBACBA valid
 Making a periodic schedule admissible is always

possible, but changes specification...

B C

A
1

2

1

3

2

3

- 51 -CS - ES

An Inconsistent System

 No way to execute it without an unbounded
accumulation of tokens

 Only consistent solution is “do nothing”

b

1

ca
1

32

1

1

a – c = 0
a – 2b = 0
3b – c = 0

3a – 2c = 0

- 52 -CS - ES

Calculating Rates

 Each arc imposes a constraint

b

d

1
2

3

2

c

a

3

41

3

2
1

6

3a – 2b = 0
4b – 3d = 0

b – 3c = 0
2c – a = 0
d – 2a = 0

Solution:
a = 2c
b = 3c
d = 4c

- 53 -CS - ES

Scheduling Example

 Theorem guarantees any valid simulation will produce a
schedule

b

d

1
2

3

2

c

a

3

41

3

2
1

6

a=2 b=3 c=1 d=4

Possible schedules:
BBBCDDDDAA
BDBDBCADDA
BBDDBDDCAA
… many more

BC … is not valid

- 54 -CS - ES

SDF Compiler

Task for an SDF compiler:
 Allocation of memory for the passing of data between nodes
 Scheduling of nodes onto processors in such a way that data is

available for a block when it is invoked

Assumptions on the SDF graph:
 The SDF graph is nonterminating and does not deadlock
 The SDF graph is connected

Goal:
 Development of a periodic admissible parallel schedule (PAPS)
 or a periodic admissible sequential schedule (PASS)

(admissible = correct schedule, finite amount of memory required)

- 55 -CS - ES

Does a PASS exist?

- 56 -CS - ES

Does a PASS exist?

 A PSS (periodic sequential schedule) exists if rank (M) = s -1, where s is the
number if nodes in a graph.

 There is a v such that Mv = O where O is a vector full of zeros. v describes
the number of firings in each scheduling period.

- 57 -CS - ES

A PASS exists

 The rank of the matrix M = is s – 1 = 2 and v =

 A valid schedule is Φ = {a, b, c, c}, but not Φ = {b, a, c, c}

 The maximum buffer sizes for the arcs are b =< 1, 2, 2 >

- 58 -CS - ES

A PASS does not exist

 The graph has sample rate inconsistencies.

 A schedule for the graph will result in unbounded buffer sizes.

 No PASS can be found (rank (M) = s = 3).

- 59 -CS - ES

PAPS

 Assumption: Block 1 : 1 time unit
Block 2 : 2 time units
Block 3 : 3 time units

Trivial Case - All computations are scheduled on same processor

- 60 -CS - ES

PAPS

 The performance can be improved, if a schedule is constructed that exploits
the potential parallelism in the SDF-graph. Here the schedule covers one
single period.

Single Period Schedule

- 61 -CS - ES

PAPS

 The performance can be further improved, if the schedule is constructed over
two periods.

Double Period Schedule

