
Prof. Dr. Christian Steger Sebastian Altmeyer, M.Sc.
Prof. Dr. Reinhard Wilhelm Michael Gerke, M.Sc.

Dipl.-Inf. Hans-Jörg Peter

Embedded Systems 2010/2011 – Assignment Sheet 9

Due: Tuesday, 25th January 2011, before the lecture (i.e., 10:10)
Please indicate your name, matr. number, email address, and which tutorial you are
planning to attend on your submission. We encourage you to collaborate in groups of up to
three students. Only one submission per group is necessary. However, in the tutorials every
group member must be capable to present each solution.

Exercise 1: Periodic Scheduling (30 pts.)

For each of the following tasks sets, (1) determine whether an EDF-schedule and/or an RM-
schedule exists, and (2) formally prove your answer.

Γ = {τ1, τ2, τ3} T1 = D1 = 3 C1 = 1
T2 = D2 = 4 C2 = 2
T3 = D3 = 8 C3 = 1

∆ = {τ1, τ2, τ3} T1 = D1 = 2 C1 = 1
T2 = D2 = 3 C2 = 1
T3 = D3 = 4 C3 = 1

Π = {τ1, τ2, τ3, τ4} T1 = D1 = 2 C1 = 1
T2 = D2 = 5 C2 = 1
T3 = D3 = 8 C3 = 2
T4 = D4 = 20 C4 = 1

Exercise 2: Aperiodic Scheduling (50 pts.)

Consider the following scheduling problem 1 | sync | Tw:

Using a uniprocessor machine, find a schedule for a set J = {J1, . . . , Jn} of n
synchronous tasks with computation times C1, . . . , Cn that minimizes the weighted
sum of the completion times

Tw =

n∑
i=1

(wifi) ,

where wi > 0 is a weight, and fi is the time at which task i finishes its execution.
(Note: The schedule is not required to respect the deadlines. We are only interested
in minimizing Tw.)

(a) Let J be a task set, and let σ be a schedule for J that is optimal with respect to the
problem 1 | sync | Tw. Formally prove that there exists a nonpreemptive schedule σ∗ for J
with the same Tw of σ.

1

(b) Devise a polynomial-time algorithm that, given a task set J = {J1, . . . , Jn}, computes a
schedule σ for J that is optimal with respect to the scheduling problem 1 | sync | Tw.

(c) Formally prove that your algorithm computes an optimal schedule.

Exercise 3: Priority Ceiling Protocol (20 pts.)

Consider the Priority Ceiling Protocol. Using this protocol, give a picture describing a run of
three tasks on one processor:

• Task 1 has the highest priority. Task 1 arrives at time t=6. Task 1 consists of normal
computation for 2 time units, followed by critical section 1 for 2 time units, followed by
normal computation for 1 time unit.

• Task 2 has lower priority than Task 1. Task 2 arrives at time t=2. Task 2 consists
of normal computation for 1 time unit, followed by critical section 2 for 3 time units,
followed by normal computation for 1 time unit, followed by critical section 3 for 1 time
unit, followed by normal computation for 1 time unit.

• Task 3 has the lowest priority. Task 3 arrives at time t=0. Task 3 consists of normal
computation for 1 time unit, followed by critical section 3 for 2 time units, followed by
normal computation for 1 time unit.

Your picture should depict which task is executed (and the type of computation: either normal
or the critical section the task is in) in the processor at which point in time, covering the interval
from time t=0 until all work is done. You should also explicitly give any changes in the priority
of the Tasks.

2

