Prof. Dr. Christian Steger Prof. Dr. Reinhard Wilhelm Sebastian Altmeyer, M.Sc. Michael Gerke, B.Sc. Dipl.-Inf. Hans-Jörg Peter

Embedded Systems 2010/2011 – Assignment Sheet 7

Due: Tuesday, 14th December 2010, *before* the lecture (i.e., 10:10)

Please indicate your name, matr. number, email address, and which tutorial you are planning to attend on your submission. We encourage you to collaborate in **groups** of up to three students. Only one submission per group is necessary. However, in the tutorials every group member must be capable to present each solution.

Exercise 1: Schedulability Test

Given the following periodic, synchronous task-set

Task	C_i	D_i	T_i
$ au_1$	2	6	6
$ au_2$	2	10	10
$ au_3$	$\overline{7}$	40	40
$ au_4$	15	121	121

- a) Give a tight upper bound on the number of time units, for which we have to simulate in order to proof if the task-set is schedulable or not.
- b) Is this task-set schedulable with EDF? Justify your answer.
- c) Use the response-time analysis as presented in lecture to determine whether or not the task-set is schedulable with RM scheduling.

Exercise 2: VHDL

Write a *behavioral* and a *structural* architecture implementing a **4-bits adder**, as well a *behavioral* and a *structural* architecture implementing a **saturating 4-bits adder**. Start with the following declaration.

```
entity adder is
    port(a3, a2, a1, a0, b3, b2, b1, b0: in bit; c3, c2, c1, c0, d: out);
end adder;
```

Let

$$a = 8a_3 + 4a_2 + 2a_1 + a_0,$$

$$b = 8b_3 + 4b_2 + 2b_1 + b_0,$$

$$c = 8c_3 + 4c_2 + 2c_1 + c_0.$$

(20 pts.)

(30 pts.)

Denote with $+_{16}$ addition modulo 16. Denote with $+_{16}^{s}$ saturating addition modulo 16, that is:

$$a +_{16}^{s} b = \begin{cases} a+b, & \text{if } a+b \le 15\\ 15, & \text{otherwise}. \end{cases}$$

You must ensure that:

- $c = a +_{16} b$, for the 4-bits adder;
- $c = a + {}^{s}_{16} b$, for the saturating 4-bits adder;
- in all cases: d = 1 iff there was an overflow, i.e., a + b > 15.

When writing the structural architectures, you can use full adders, half adders, and gates as your starting subentities.