
Prof. Dr. Christian Steger Sebastian Altmeyer, M.Sc.
Prof. Dr. Reinhard Wilhelm Michael Gerke, B.Sc.
a Dipl.-Inf. Hans-Jörg Peter

Embedded Systems 2010/2011 – Assignment Sheet 5

Due: Tuesday, 30th November 2010, before the lecture (i.e., 10:10)
Please indicate your name, matr. number, email address, and which tutorial you are
planning to attend on your submission. We encourage you to collaborate in groups of up to
three students. Only one submission per group is necessary. However, in the tutorials every
group member must be capable to present each solution.

Exercise 1: SyncCharts with Scade (35 pts.)

Use Scade to create a SyncChart model of a lift controller having the following properties:

• The lift moves between two levels.

• There are two buttons within the lift (one for each level) and one button at each level.

• If the lift is not in use, the door is closed.

• The door closes automatically after five ticks, unless somebody enters/leaves the lift or
the button for the current level is pressed.

• The door opens, if the lift enters another level or if the button for the current level is
pressed (only in case the lift is not moving).

• The lift can be in-between the two levels; the door must be closed in this case.

Input signals: LiftButton1, LiftButton2 (buttons within the lift), LevelButton1, LevelButton2
(buttons at the two levels) and LightSignal (indicates if someone enters/leaves the lift).

Create a new ScadeSuite workspace “EmbSys” and within this workspace a new project
“Lift”. Add a file “group.txt” to this directory containing the name and matr. number of each
group member. Compress the whole workspace directory (to .rar or .zip) and send it to:

altmeyer@cs.uni-saarland.de

In addition, provide a print-out of the graphical representation of the model as well as a short
explanation. Only submissions available on paper and via mail will be graded.

Please turn the page over...

1



Exercise 2: Aperiodic Uniprocessor Scheduling (35 pts.)

Prove that the problem of scheduling a set of aperiodic, asynchronous tasks on a non-preemptive,
uniprocessor architecture is NP-complete by solving the following two subtasks:

(a) Consider the problem Partition which is known to be NP-hard:

For a given finite set of positive integers S, where the sum of its elements is even,
find a subset S′ of S such that ∑

i∈S′

i =
1

2

∑
j∈S

j.

Prove that the scheduling problem stated above is NP-hard by showing that there is a
polynomial reduction from Partition. That is, formally describe how an arbitrary instance
of Partition can be transformed into an instance of the scheduling problem such that there
is only a polynomial blow-up in the size of the transformed instance. Furthermore, you
have to describe how to interpret the scheduling result: What means (un)schedulability for
the original Partition instance? (25 pts.)

(b) Prove that the scheduling problem stated above is in NP by providing a polynomial-time
algorithm that checks if a given schedule is feasible. (10 pts.)

Exercise 3: EDD Scheduling (30 pts.)

Consider the EDD (Earliest-Due-Date) algorithm for scheduling n synchronous, aperiodic, and
independent tasks on a uniprocessor architecture. For each of the following statements, decide
whether EDD minimizes it. Justify your answer either by giving a formal proof or a counter-
example.

(a) The average response time (10 pts.)

R =
1

n

n∑
i=1

fi.

(b) The total completion time (10 pts.)

Tc = max
1≤i≤n

(fi).

(c) The number of late tasks (10 pts.)

Nlate =
∣∣{1 ≤ i ≤ n : di < fi}

∣∣.
Here, for each 1 ≤ i ≤ n, di is the deadline and fi is the response (or finishing) time of task i,
respectively.

2


