
Prof. Dr. Christian Steger Sebastian Altmeyer, M.Sc.
Prof. Dr. Reinhard Wilhelm Michael Gerke, B.Sc.
a Dipl.-Inf. Hans-Jörg Peter

Embedded Systems 2010/2011 – Assignment Sheet 4

Due: Tuesday, 23rd November 2010, before the lecture (i.e., 10:10)
Please indicate your name, matr. number, email address, and which tutorial you are
planning to attend on your submission. We encourage you to collaborate in groups of up to
three students. Only one submission per group is necessary. However, in the tutorials every
group member must be capable to present each solution.

Exercise 1: Modeling with SDL (30 pts.)

An embedded device comprises n sensors and n independent processing units, where n = 2k

and k ∈ N. Each processing unit Pi is connected to its designated sensor whose value is given
as Si ∈ N, 1 ≤ i ≤ n. This means that only Pi can read Si.

Let ◦ : N×N→ N be a commutative and associative operation such that a◦b can be computed
in time O(1). Your task is to provide a distributed algorithm in SDL such that the result of

S1 ◦ S2 ◦ . . . ◦ Sn

is sent after O(log n) time to a designated result process P2n. Here, “distributed” means that
you have to provide an SDL process implementation for each Pi, 1 ≤ i ≤ n. P2n does not need
to be implemented. Each Pi can have constantly (i.e., independent of n) many local variables,
but no arrays may be used.

Recall that each process can only send their local computed values via FIFO queues to other
processes. You can assume that, before your algorithm is executed, the current value of Si is
the top element in the input FIFO queue of Pi, for each 1 ≤ i ≤ n. For receiving and sending
variable values to other processes, you can use the syntax shown in Figure 1.

m(x) TO Pi+y

(a) Sending the value of a local
variable x as the parameter of a
signal m to a process Pi+y.

m(z)

(b) Receiving a signal m and stor-
ing its parameter into a local vari-
able z.

Figure 1: SDL example syntax for sending/receiving values of local variables to/from other
processes.

1

Exercise 2: Timers in SDL (25 pts.)

Recall the timed mutual exclusion protocol from the first assignment sheet (Exercise 3). The
StateChart model for two processes is shown in Figure 2.

D sec

req1
idle1

try1 and id = 0 /

timeout

crit1

timeout

T sec

wait1

set1 / id:=1

check1

retry1 and id != 1 /

enter1 and id = 1 /

exit1 / id:=0

D sec

req2
idle2

try2 and id = 0 /

timeout

crit2

timeout

T sec

wait2

set2 / id:=2

check2

retry2 and id != 2 /

enter2 and id = 2 /

exit2 / id:=0

P1 P2

Figure 2: StateChart AND-state modeling a timed mutual exclusion protocol for two processes.

Your task is to provide an equivalent SDL model, assuming a non-deterministic interleaving
semantics in case of concurrent effects. Your model should comprise three SDL processes: one
for P1, one for P2, and one for the shared variable. You can assume that the external events try,
set, retry, enter, and exit are sent non-deterministically by some unspecified environment
process to P1 or P2, respectively.

Exercise 3: Basic Modeling with Lustre (20 pts.)

Implement the following functions in Lustre:

(a) A node Sum, with two inputs Val and Reset , and one output Out . Out is the sum of all
values of Val that the node has seen since the last Reset . (5 pts.)

(b) A node Still , with one Boolean input X and one Boolean output Y . Y should be true
precisely when X has been true all the time since the first point in time. (5 pts.)

(c) A node MaxDistance, with one Boolean input X, one integer input N , and a Boolean output
Ok . Ok shall be true in cycle k, iff X was true at least once during the previous N + 1
clock cycles or if k ≤ N . (10 pts.)

2

Exercise 4: Modeling a Lift Controller with Lustre (25 pts.)

Consider a simple lift, moving people up and down between two floors. In the lift, there are
three buttons: One for going up, one for going down, and one Stop button. On each floor, there
is a Call button. Furthermore, each floor has a sensor, indicating if the lift is on that floor or
not. There is also a sensor in the lift, checking if the door to the lift is closed or not.

The lift is moved up and down by a motor that is on the roof of the building. The motor is
controlled by two signals, Motor Up and Motor Down.

Your task is to give a Lustre implementation of a controller that observers the buttons that
are being pressed, the sensors indicating the current position of the lift, and whether the door
is open. Based on these observations, your controller decides if the motor should move the lift
up or down, or do nothing.

For simplicity, we do not make a difference between if someone on floor 2 presses the Call

button or if someone in the lift presses the Up button. Similarly for the Call button on floor 1
and the Down button in the lift. Furthermore, we assume that the Up and Down buttons are
never pressed together in the same time instant or that two people on different floors call the
lift in the same time instant.

Furthermore, your controller should satisfy the following requirements:

• The lift may only move when the door is closed and the Stop button is not pressed.

• The lift may not pass the end positions (that is: go through the roof or through the floor.)

• A moving lift only stops if either the Stop button is pressed, or the door is opened, or the
lift has arrived at a floor.

• The lift must stop before changing direction.

• The signals sent to the motor may not be contradictory.

Your Lustre implementation must have the following interface:

node Control(Floor_1, Floor_2, Door_Closed, Call_1, Call_2, Stop : bool)

returns (Motor_Up, Motor_Down : bool);

3

