Chapter 1

Many-Sorted Logic

1.1 Syntax

1.1.1 Definition
We fix an enumerable set Sort of sorts.

1.1.2 Definition
We fix an enumerable set Var of VARIABLES. Each variable has associated to it a sort. We denote with Var_σ the set of variables of sort σ. We assume that Var_σ is enumerable, for all sorts σ.

1.1.3 Definition
We fix an enumerable set Con of CONSTANT SYMBOLS. Each constant symbol has associated to it a sort. We denote with Con_σ the set of constant symbols of sort σ. We assume that Con_σ is enumerable, for all sorts σ.

1.1.4 Definition
We fix an enumerable set Fun of FUNCTION SYMBOLS. Each function symbol has associated to it an arity of the form $\sigma_1 \times \cdots \times \sigma_n \to \sigma$, where $n \geq 1$ and $\sigma_1, \ldots, \sigma_n, \sigma$ are sorts. We denote with $\text{Fun}_{\sigma_1 \times \cdots \times \sigma_n \to \sigma}$ the set of function symbols of arity $\sigma_1 \times \cdots \times \sigma_n \to \sigma$. We assume that $\text{Fun}_{\sigma_1 \times \cdots \times \sigma_n \to \sigma}$ is enumerable, for all sorts $\sigma_1, \ldots, \sigma_n, \sigma$.

1.1.5 Definition
We fix an enumerable set Pred of PREDICATE SYMBOLS. Each predicate symbol has associated to it an arity of the form $\sigma_1 \times \cdots \times \sigma_n$, where $n \geq 1$ and $\sigma_1, \ldots, \sigma_n$ are sorts. We denote with $\text{Pred}_{\sigma_1 \times \cdots \times \sigma_n}$ the set of predicate symbols of arity $\sigma_1 \times \cdots \times \sigma_n$. We assume that $\text{Pred}_{\sigma_1 \times \cdots \times \sigma_n}$ is enumerable, for all sorts $\sigma_1, \ldots, \sigma_n$.
1.1.6 Definition
The equality symbol is \approx.

1.1.7 Definition
The propositional connectives are
1. \neg (not);
2. \land (and);
3. \lor (or);
4. \rightarrow (implies);
5. \leftrightarrow (iff).

1.1.8 Definition
The universal quantifier is \forall.

1.1.9 Definition
The existential quantifier is \exists.

1.1.10 Definition
A signature is a tuple $\Sigma = (S, C, F, P)$ where:
1. S is a nonempty set of sorts.
2. C is a countable set of constant symbols whose sorts belong to S.
3. F is a countable set of function symbols whose arities are constructed using sorts that belong to S.
4. P is a countable set of predicate symbols whose arities are constructed using sorts that belong to S.

Given a signature $\Sigma = (S, C, F, P)$, we write Σ^S for S, Σ^C for C, Σ^F for F, and Σ^P for P.

1.1.11 Definition
Let Σ be a signature. The set of Σ-terms of sort σ is the smallest set of expressions satisfying the following properties:

- Each variable x of sort σ is a term of sort σ, provided that $\sigma \in \Sigma^S$.
- Each constant symbol $c \in \Sigma^C$ of sort σ is a Σ-term of sort σ.
- If $f \in \Sigma^F$ is a function symbol of arity $\sigma_1 \times \cdots \times \sigma_n \rightarrow \sigma$ and t_i is a Σ-term of sort σ_i, for $i = 1, \ldots, n$, then $f(t_1, \ldots, t_n)$ is a term of sort σ.

1.1.12 Definition
Let Σ be a signature. A Σ-atom is an expression of the form

$$s \approx t, \quad p(t_1, \ldots, t_n),$$

where:
1.1. Syntax

1. s and t are Σ-terms of the same sort;

2. $p \in \Sigma^P$ is a predicate symbol of arity $\sigma_1 \times \cdots \times \sigma_n$ and t_i is a Σ-term of sort σ_i, for $i = 1, \ldots, n$.

1.1.13 Definition

The set of Σ-formulae is the smallest set of expressions satisfying the following properties:

1. Each Σ-atom is a Σ-formula.

2. If φ is a Σ-formula then $\neg \varphi$ is a Σ-formula.

3. If φ and ψ are Σ-formulae then $\varphi \wedge \psi$, $\varphi \vee \psi$, $\varphi \rightarrow \psi$, and $\varphi \leftrightarrow \psi$ are formulae.

4. If φ is a Σ-formula, $\sigma \in \Sigma^S$, and x is a variable of sort σ, then $(\forall \sigma x) \varphi$ and $(\exists \sigma x) \varphi$ are Σ-formulae.

1.1.14 Definition

A Σ-literal is a formula of the form

$$\varphi, \quad \neg \varphi,$$

where φ is a Σ-atom.

1.1.15 Definition

A quantifier-free Σ-formula is a Σ-formula in which no quantifier occurs.

1.1.16 Definition

Let t be a term, and let σ be a sort. We denote with $\text{vars}_\sigma(t)$ the set of variables of sort σ occurring in t. This set can be recursively defined as follows:

1. $\text{vars}_\sigma(x) = \{x\}$, for all variables x of sort σ.

2. $\text{vars}_\sigma(x) = \emptyset$, for all variables x whose sort is not σ.

3. $\text{vars}_\sigma(c) = \emptyset$, for all constant symbols c.

4. $\text{vars}_\sigma(f(t_1, \ldots, t_n)) = \bigcup_{i=1}^n \text{vars}_\sigma(t_i)$.

1.1.17 Definition

Let t be a term. We denote with $\text{vars}(t)$ the set of variables occurring in t, that is,

$$\text{vars}(t) = \bigcup_{\sigma \in \text{Sort}} \text{vars}_\sigma(t).$$

1.1.18 Definition

Let T be a set of terms. We let

$$\text{vars}_\sigma(T) = \bigcup_{t \in T} \text{vars}_\sigma(t),$$
1.1.19 Definition
Let T be a set of terms. We let

$$\text{vars}(T) = \bigcup_{t \in T} \text{vars}(t).$$

1.1.20 Definition
Let φ be a formula, and let σ be a sort. We denote with $\text{vars}_\sigma(\varphi)$ the set of variables occurring free in φ. This set can be recursively defined as follows:

1. $\text{vars}_\sigma(s \approx t) = \text{vars}_\sigma(s) \cup \text{vars}_\sigma(t)$.
2. $\text{vars}_\sigma(p(t_1, \ldots, t_n)) = \bigcup_{i=1}^n \text{vars}_\sigma(t_i)$.
3. $\text{vars}_\sigma(\neg \varphi_1) = \text{vars}_\sigma(\varphi_1)$.
4. $\text{vars}_\sigma(\varphi_1 \land \varphi_2) = \text{vars}_\sigma(\varphi_1) \cup \text{vars}_\sigma(\varphi_2)$.
5. $\text{vars}_\sigma(\varphi_1 \lor \varphi_2) = \text{vars}_\sigma(\varphi_1) \cup \text{vars}_\sigma(\varphi_2)$.
6. $\text{vars}_\sigma(\varphi_1 \rightarrow \varphi_2) = \text{vars}_\sigma(\varphi_1) \cup \text{vars}_\sigma(\varphi_2)$.
7. $\text{vars}_\sigma((\forall \tau x)\varphi_1) = \text{vars}_\sigma(\varphi_1) \setminus \{x\}$.
8. $\text{vars}_\sigma((\exists \tau x)\varphi_1) = \text{vars}_\sigma(\varphi_1) \setminus \{x\}$.

1.1.21 Definition
Let φ be a formula. We denote with $\text{vars}(\varphi)$ the set of variables occurring free in φ, that is,

$$\text{vars}(\varphi) = \bigcup_{\sigma \in \text{Sort}} \text{vars}_\sigma(\varphi).$$

1.1.22 Definition
Let Φ be a set of formulae. We let

$$\text{vars}_\sigma(\Phi) = \bigcup_{\varphi \in \Phi} \text{vars}_\sigma(\varphi),$$

1.1.23 Definition
Let Φ be a set of formulae. We let

$$\text{vars}(\Phi) = \bigcup_{\varphi \in \Phi} \text{vars}(\varphi).$$

1.1.24 Definition
Let Σ be a signature. A Σ-sentence is a Σ-formula φ such that $\text{vars}(\varphi) = \emptyset$.
1.2 Semantics

1.2.1 Definition
Let Σ be a signature, and let X be a set of variables whose sorts are in Σ^S. A Σ-interpretation over X is a map satisfying the following properties:

1. Each sort $\sigma \in \Sigma^S$ is mapped to a nonempty domain A_{σ}.
2. Each variable $x \in X$ of sort σ is mapped to an element $x^A \in A_{\sigma}$.
3. Each constant symbol $c \in \Sigma^C$ of sort σ is mapped to an element $c^A \in A_{\sigma}$.
4. Each function symbol $f \in \Sigma^F$ of arity $\sigma_1 \times \cdots \times \sigma_n \rightarrow \sigma$ is mapped to a function $f^A : A_{\sigma_1} \times \cdots \times A_{\sigma_n} \rightarrow A_{\sigma}$.
5. Each predicate symbol $p \in \Sigma^P$ of arity $\sigma_1 \times \cdots \times \sigma_n$ is mapped to a subset $p^A \subseteq A_{\sigma_1} \times \cdots \times A_{\sigma_n}$.

1.2.2 Definition
Let Σ be a signature. A Σ-structure is a Σ-interpretation over an empty set of variables.

1.2.3 Definition
Let Σ be a signature, let t be a Σ-term of sort σ, and let A be a Σ-interpretation over X such that $\text{vars}(t) \subseteq X$. The evaluation of t under A is the object $t^A \in A_{\sigma}$ recursively defined as follows:

1. The evaluation of a variable x is x^A.
2. The evaluation of a constant symbol c is c^A.
3. The evaluation of a term $f(t_1, \ldots, t_n)$ is
$$\left[f(t_1, \ldots, t_n)\right]^A = f^A(t_1^A, \ldots, t_n^A).$$

1.2.4 Definition
Let A and B be Σ-interpretations over X, and let $x \in X$ be a variable. We say that B is an x-variant of A if:

1. $A_{\sigma} = B_{\sigma}$, for all sorts $\sigma \in \Sigma^S$.
2. $r^A = r^B$, for all objects $r \in \Sigma^C \cup \Sigma^F \cup \Sigma^P \cup (X \setminus \{x\})$.

1.2.5 Definition
Let Σ be a signature, let φ be a Σ-formula, and let A be a Σ-interpretation over X such that $\text{vars}(\varphi) \subseteq X$. The evaluation of φ under A is the truth value $\varphi^A \in A_{\sigma}$ recursively defined as follows:

1. $[s \approx t]^A = \text{true} \iff s^A = t^A$.
2. $[p(t_1, \ldots, t_n)]^A = \text{true} \iff (t_1^A, \ldots, t_n^A) \in p^A$.

3. $[-\varphi]^A = true \iff \varphi^A = false$.
4. $[\varphi \land \psi]^A = true \iff \varphi^A = true$ and $\psi^A = true$.
5. $[\varphi \lor \psi]^A = true \iff \varphi^A = true$ or $\psi^A = true$.
6. $[\varphi \rightarrow \psi]^A = true \iff \varphi^A = false$ or $\psi^A = true$.
7. $[(\forall x)\varphi]^A = true \iff \varphi^B = true$, for all x-variants B of A.
8. $[(\exists x)\varphi]^A = true \iff \varphi^B = true$, for some x-variant B of A.

1.2.6 Definition
Let A be a Σ-interpretation over X, and let φ be a Σ-formula such that $\text{vars}(\varphi) \subseteq X$. We write $A \models \varphi$
when $\varphi^A = true$.

1.2.7 Definition
Let φ be a Σ-formula, and let $X = \text{vars}(\varphi)$. We say that φ is:
- **valid**, if $A \models \varphi$, for all Σ-interpretations A over X;
- **satisfiable**, if $A \models \varphi$, for some Σ-interpretation A over X;
- **unsatisfiable**, if φ is not satisfiable.

1.2.8 Definition
Let A be a Σ-interpretation over X, and let Φ be a set of Σ-formulae such that $\text{vars}(\Phi) \subseteq X$. We write $A \models \Phi$
when $A \models \varphi$, for all formulae $\varphi \in \Phi$.

1.2.9 Definition
Let Φ be a set of Σ-formulae, and let $X = \text{vars}(\Phi)$. We say that Φ is:
- **valid**, if $A \models \Phi$, for all Σ-interpretations A over X;
- **satisfiable**, if $A \models \Phi$, for some Σ-interpretation A over X;
- **unsatisfiable**, if Φ is not satisfiable.
1.3. Modelclasses

1.2.10 Definition
Let A be a Σ-interpretation over X. For $\Sigma_0 \subseteq \Sigma$ and $X_0 \subseteq X$, we denote with A^{Σ_0, X_0} the interpretation obtained from A by restricting it to interpret only the symbols in Σ_0 and the variables in X_0. Furthermore, we let $A^{\Sigma_0, \emptyset} = A^{\Sigma_0, \emptyset}$.

1.2.11 Definition
Let A and B be two Σ-interpretations over X. An isomorphism h of A into B is a family of bijective functions

$$h = \{h_\sigma : A_\sigma \to B_\sigma \mid \sigma \in \Sigma^S\}$$

such that:

1. $h_\sigma(x^A) = x^B$, for all variables $x \in X_\sigma$.
2. $h_\sigma(c^A) = c^B$, for all constant symbols $c \in \Sigma^C$.
3. $h_\sigma(f^A(a_1, \ldots, a_n)) = f^B(h_\sigma_1(a_1), \ldots, h_\sigma_n(a_n))$, for all function symbol $f \in \Sigma^F$ of arity $\sigma_1 \times \cdots \times \sigma_n \rightarrow \sigma$.
4. $(a_1, \ldots, a_n) \in p^A$ if and only if $(h_\sigma_1(a_1), \ldots, h_\sigma_n(a_n)) \in p^B$, for all predicate symbol $p \in \Sigma^P$ of arity $\sigma_1 \times \cdots \times \sigma_n$.

We write $A \cong B$ when there is an isomorphism of A into B.

1.3 Modelclasses

1.3.1 Definition
A Σ-MODELCLASS is a pair $M = (\Sigma, A)$ such that:

1. Σ is a signature;
2. A is a class of Σ-structures;
3. A is closed under isomorphism.

1.3.2 Definition
Let $M = (\Sigma, A)$ be a modelclass. An M-STRUCTURE is a Σ-structure A such that $A \in A$.

1.3.3 Definition
Let $M = (\Sigma, A)$ be a modelclass. An M-INTERPRETATION is a Σ-interpretation A such that A^{Σ} is a Σ-structure.

1.3.4 Definition
Let M be a Σ-modelclass, let A be a Σ-interpretation over X, and let φ be a Σ-formula such that $\text{vars}(\varphi) \subseteq X$. We write

$$A \models_M \varphi,$$

whenever $\varphi^A = \text{true}$ and A^{Σ} is an M-structure.
1.3.5 Definition
Let M be a Σ-modelclass, let φ be a Σ-formula, and let $X = \text{vars}(\varphi)$. We say that φ is:
- M-valid, if $A \models_M \varphi$, for all M-interpretations A over X;
- M-satisfiable, if $A \models_M \varphi$, for some M-interpretation A over X;
- M-unsatisfiable, if φ is not M-satisfiable.

1.3.6 Definition
Let M be a Σ-modelclass, let A be a Σ-interpretation over X, and let Φ be a set of Σ-formulae such that $\text{vars}(\Phi) \subseteq X$. We write
$$A \models_M \Phi$$
when
$$A \models_M \varphi, \quad \text{for all formulae } \varphi \in \Phi.$$

1.3.7 Definition
Let M be a Σ-modelclass, let Φ be a set of Σ-formulae, and let $X = \text{vars}(\Phi)$. We say that Φ is:
- M-valid, if $A \models_M \Phi$, for all Σ-interpretations A over X;
- M-satisfiable, if $A \models_M \Phi$, for some Σ-interpretation A over X;
- M-unsatisfiable, if Φ is not M-satisfiable.

1.3.8 Definition
Let M be a Σ-modelclass, and let L be a set of Σ-formulae. We define the following decision problems:
- The validity problem of M with respect to L is the problem of deciding, for each Σ-formula $\varphi \in L$, whether or not φ is M-valid.
- The satisfiability problem of M with respect to L is the problem of deciding, for each Σ-formula $\varphi \in L$, whether or not φ is M-satisfiable.
- The unsatisfiability problem of M with respect to L is the problem of deciding, for each Σ-formula $\varphi \in L$, whether or not φ is M-unsatisfiable.

When we mention a decision problem without specifying the set of formulae L, we implicitly assume that L is the set of all Σ-formulae. For instance, if M is a Σ-modelclass, the validity problem of a Σ-model class M is the problem of deciding, for each Σ-formula φ whether or not φ is M-valid.

When we prefix the name of a decision problem with “quantifier-free”, we implicitly assume that L is the set of all quantifier-free Σ-formulae. For instance, the quantifier-free satisfiability problem of a Σ-model class M is the problem of deciding, for each quantifier-free Σ-formula φ whether or not φ is M-satisfiable.