1. LTL-to-Alternating-Büchi (Group G10, discussion session 12:00 with Felix Klein)

Construct an alternating Büchi automaton \mathcal{A} such that

$$
\mathcal{L}(\mathcal{A})=\operatorname{models}((\mathrm{Fp}) \mathcal{U}(\mathrm{G} q)) .
$$

Use the construction from the lecture to obtain \mathcal{A}.
2. Complete Alternating Büchi Automata (Group G11, discussion session 12:20 with Felix Klein)

An alternating automaton is called complete iff neither true nor false are in the mapping of δ (run trees of complete alternating automata have only infinite branches and every input word has a run tree).
Prove or give a counter-example to the following statement:
Every language that is recognized by an alternating Büchi automaton is recognized by a complete alternating Büchi automaton.
3. Alternating Parity Automata (Group G14, discussion session 12:40 with Felix Klein)

Let $\mathcal{P}_{1}=\left(Q_{1}, q_{0}^{1}, \delta_{1}, \alpha_{1}\right)$ and $\mathcal{P}_{2}\left(Q_{2}, q_{0}^{2}, \delta_{2}, \alpha_{2}\right)$ with disjoint sets $Q_{1} \cap Q_{2}=\emptyset$ of states be two alternating parity automata. Prove or give a counter-example for the general correctness of the following statements:
a) The language $\mathcal{L}\left(\mathcal{P}_{1}\right) \cup \mathcal{L}\left(\mathcal{P}_{2}\right)$ is recognizable by an alternating parity automaton.
b) The language $\mathcal{L}\left(\mathcal{P}_{1}\right) \cap \mathcal{L}\left(\mathcal{P}_{2}\right)$ is recognizable by an alternating parity automaton.
c) The language $\Sigma^{\omega} \backslash \mathcal{L}\left(\mathcal{P}_{1}\right)$ is recognizable by an alternating parity automaton.
4. Alternating vs. Deterministic Automata (challenge problem)

Consider the following family of languages L_{n} :

$$
\begin{aligned}
L_{n}=\left\{v_{1} \# u v_{2} \$ u \beta \mid\right. & v_{1} \in\{0,1, \#\}^{*} \\
& v_{2} \in\{0,1, \#\}^{*} \\
& u \in\{0,1\}^{n} \\
& \left.\beta \in\{0,1, \#, \$\}^{\omega}\right\} .
\end{aligned}
$$

a) Construct a family \mathcal{A}_{n} of alternating Büchi automata with $\mathcal{L}\left(\mathcal{A}_{n}\right)=L_{n}$ such that each automaton \mathcal{A}_{n} has only $O(n)$ states.
b) Show that any deterministic Muller automaton that recognizes L_{n} has at least $2^{2^{n}}$ states.

