Automata, Games, and Verification

1. LTL \& Determininistic Automata (Group G06, discussion session 12:00 with Felix Klein)

- Compare the expressive power of linear-time temporal logic and deterministic Büchi automata.
- Compare the expressive power of linear-time temporal logic and deterministic co-Büchi automata.

2. Temporal Operators (Group G04, discussion session 12:00 with Hazem Torfah)

Show that $\{\neg, \wedge, \mathrm{X}, \mathcal{W}\}$ is an operator basis for LTL, i.e., that you can express every LTL formula ψ as an equivalent LTL formula ψ^{\prime}, in which apart from atomic propositions, only the operators \neg, \wedge, X and \mathcal{W} are used.
3. LTL, QPTL \& S1S (Group G12, discussion session 12:20 with Hazem Torfah)

Let $\mathrm{AP}=\{q, p, r\}$. Given some word $w=w_{0} w_{1} w_{2} \ldots \in\left(2^{\mathrm{AP}}\right)^{\omega}$, for every $a \in \mathrm{AP}$, we denote $\left.w\right|_{a}=\left(w_{0} \cap\{a\}\right)\left(w_{1} \cap\{a\}\right)\left(w_{2} \cap\{a\}\right) \ldots$ and $w(i, j)=w_{i} w_{i+1} \ldots w_{j}$ for every $i, j \in \mathbb{N}$ with $i \leq j$.
Given some finite word $w=w_{0} w_{1} \ldots w_{n}$, we define $f:\left(2^{\mathrm{AP}}\right) \rightarrow \mathbb{N}$ to denote the number represented by w in binary (with the least significant bit first), where we treat the letter \emptyset as 0 and every other letter in 2^{AP} as 1 , i.e., $f(\epsilon)=0$ and:

$$
f\left(w_{0} w_{1} \ldots w_{n}\right)= \begin{cases}f(w(1, n)) \cdot 2 & \text { if } w_{0}=\emptyset \\ f(w(1, n)) \cdot 2+1 & \text { if } w_{0} \neq \emptyset\end{cases}
$$

Represent the following language L as LTL, QPTL and S1S formulas.

$$
L=\left\{w \in\left(2^{\mathrm{AP}}\right)^{\omega} \mid \forall j \in \mathbb{N}: f\left(\left.w\right|_{r}(0, j)\right)=f\left(\left.w\right|_{p}(0, j)\right)+f\left(\left.w\right|_{q}(0, j)\right)\right\}
$$

4. S1S and LTL (Group G03, discussion session 12:40 with Hazem Torfah)

Decide for each of the languages over $2^{\{p, q\}}$ described below if they can be defined in S1S and/or LTL. Justify your answer in each case by either providing a formula or an argument why the language is not definable.
a) $L_{1}=\{\alpha \mid p \in \alpha(0), p \notin \alpha(i)$ for all $i \geq 1\}$;
b) $L_{2}=\{\alpha \mid p \in \alpha(i)$ for exactly two different $i \in \omega\}$;
c) $L_{3}=\{\alpha| |\{i \in \omega \mid p \in \alpha(i)\} \mid$ is finite and even $\}$;
d) $L_{4}=\{\alpha| |\{i \in \omega \mid p \in \alpha(i)\} \mid$ and $|\{i \in \omega \mid q \in \alpha(i)\}|$ are finite and equal $\}$.
5. Efficient Determinization - Safra's Construction (challenge question)

In the lecture we proved McNaughton's Theorem in two steps. Show that the following construction can be used to turn a nondeterministic Büchi automaton $\mathcal{A}=(S, I, T, F)$ directly into a deterministic Muller automaton $\mathcal{M}=\left(S^{\prime}, I^{\prime}, T^{\prime}, \mathcal{F}^{\prime}\right)$:
A tree is called a Safra tree iff
a) Each node of the tree is labeled with a set of states, called the macrostates of the node.
b) The macrostates of brother nodes are disjoint.
c) The union of the sets of brother macrostates is a proper subset of the macrostates of their parent node.
d) Each node has a unique name in $\{1, \ldots, n\}$ for some $n \in \omega$.
e) A (possibly empty) subset of the nodes nodes are marked!.
S^{\prime} is the set of Safra trees such that
a) the root node is named 1 ,
b) the root node has a macrostate $M \subseteq S$ which forms a subset of S, and
c) the set of names is $\{1, \ldots, 2|S|\}$.

The initial state s_{0}^{\prime} is the Safra tree with a single (unmarked) node with macrostate I and name 1 .
The transition is performed in six steps:
a) All marks ! are removed.
b) For every node with macrostate M, a new son with macrostate $M^{\prime}=p r_{3}(T \cap M \times\{\sigma\} \times F)$, is created. The new nodes get fresh names (in a predefined fashion).
c) For every old node with macrostate M, the macrostate is updated to $M^{\prime}=p r_{3}(T \cap M \times\{\sigma\} \times S)$.
d) (horizontal merge): For every node with macrostate M and $s \in M$, remove s from the macrostate of all younger brothers and their descendants .
e) Remove all nodes with empty macrostate.
f) (vertical merge): For every node whose macrostate equals the union of the macrostates of its sons:
i. delete its descendants, and
ii. mark n with !.
$\mathcal{F}=\left\{F^{\prime} \subseteq S^{\prime}|\exists i \in 1, \ldots, 2| S \mid\right.$ s.t. a node named i is in all Safra trees in F^{\prime}, and the node named i is marked ! in some Safra tree in $\left.F^{\prime}\right\}$.
Hints: For $\mathcal{L}\left(\mathcal{A}^{\prime}\right) \subseteq \mathcal{L}(\mathcal{A})$ you can use Königs Lemma in the same way as we used it for the semideterminization in the lecture.
For $\alpha \in \mathcal{L}(\mathcal{A}) \Rightarrow \alpha \in \mathcal{L}\left(\mathcal{A}^{\prime}\right)$, fix an accepting run $r=s_{0} s_{1} s_{2} \ldots$ of \mathcal{A} for α, and consider the run $r^{\prime}=s_{0}^{\prime} s_{1}^{\prime} s_{2}^{\prime} \ldots$ of \mathcal{A}^{\prime} for α. Let $\pi=p_{0} p_{1} p_{2} \ldots$ be the sequence of paths of nodes s.t. p_{i} is the sequence of names of nodes of the Safra tree s_{i}^{\prime} whose macrostates contain s_{i} (naturally they always form a path in s_{i}^{\prime}). Does π stabilize in some sense, or is there a useful limit operation you can exploit?
Remark: Even (or: especially) if you do not solve the challenge question, try the construction on the following semi-deterministic Büchi automaton:

