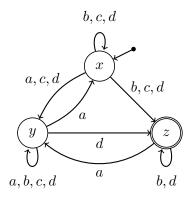
Prof. Bernd Finkbeiner, Ph.D. Markus Rabe, M.Sc. Hazem Torfah, B.Sc Felix Klein, B.Sc.

Automata, Games, and Verification

1. Run DAGs (Group G03, discussion session 12:00 with Hazem Torfah)

Let $\Sigma = \{a, b, c, d\}$ be an alphabet, $w = ddbac^{\omega}$ be a word over this alphabet, and \mathcal{A} be the following Büchi automaton over Σ having the states $\{x, y, z\}$:



- a) Draw the run DAG for \mathcal{A} on w. As the DAG is infinite, you only need to sketch it in a way such that it is, intuitively, clear how it is to be continued after a certain pattern emerges.
- b) Reason whether w is accepted by A.
- c) Finally, write down the sequence of DAGs $G_0 \supseteq G_1 \supseteq G_2 \dots$ as defined in the proof of Lemma 1 of Section 5 of the lecture.
- 2. Strictly Büchi Recognizable Languages (Group G09, discussion session 12:00 with Felix Klein)

A *strict Büchi* automaton $\mathcal{A} = (S, I, T, F)$ is the same as a Büchi automaton except that the definition of an accepting run is changed as follows:

A run r for $\alpha \in \Sigma^{\omega}$ is accepting on \mathcal{A} , when In(r) = F.

Proof or give a counter example to the following statements:

- a) If L is recognizable by a strict Büchi automaton then L is Büchi-recognizable.
- b) If L is recognizable by a strict Büchi automaton then L is recognizable by a deterministic Büchi automaton.
- c) If L is Büchi-recognizable then L is strictly Büchi-recognizable.
- d) If L is recognizable by a deterministic Büchi automaton then L is strictly Büchi-recognizable.
- 3. Co-Limit Operation (Group G11, discussion session 12:20 with Felix Klein)

The *co-limit* of W is defined as $\overleftarrow{W} = \{ \alpha \in \Sigma^{\omega} \mid \text{there exist only finitely many } n \in \omega \text{ s.t. } \alpha(0, n) \in W \}^1.$

Let $V, W \subseteq \Sigma^*$ be two regular languages. Prove or give a counter example to the following statements:

¹For a finite word $\alpha \in \Sigma^*$ and two natural numbers $m, n \in \omega$ with $m \leq n$, $\alpha(m, n)$ denotes the substring from m to n: $\alpha(m, n) = \alpha(m) \alpha(m+1) \dots \alpha(n)$.

- a) $\overleftarrow{(V \cdot W)} = V \cdot \overleftarrow{W}$
- b) $V \cdot \overleftarrow{W}$ is Büchi-recognizable
- c) $V \cdot \overleftarrow{W}$ is recognizable by a deterministic Büchi automaton
- 4. co-Büchi Automata (Group G14, discussion session 12:40 with Felix Klein)

A co-Büchi automaton $\mathcal{A} = (S, I, T, F)$ is the same as a Büchi automaton except that the definition of an accepting run is changed as follows:

A run r for $\alpha \in \Sigma^{\omega}$ is accepting on \mathcal{A} , when $In(r) \cap F = \emptyset$.

Prove or give a counter example to the following statements:

- a) co-Büchi automata are closed under \cap .
- b) co-Büchi automata are closed under \cup .
- c) co-Büchi automata are closed under pr_1 .

5.

6. co-Büchi Automata (challenge question)

Prove or provide a counter example to the statement: the co-Büchi recognizable languages and the Büchi recognizable languages are the same.