1. ω-Regular Expressions (Group G01, discussion session 12:00 with Hazem Torfah)

Represent each of the following ω-languages over the alphabet $\{a, b\}$ as a finite union of languages $V \cdot W^{\omega}$, where each V and W is recognizable by an automaton on finite words:
a) $L_{1}=\{\alpha \mid$ the maximal substrings of α consisting of only a 's have even length $\}$
b) $L_{2}=\{\alpha \mid$ each a is preceeded by a b in $\alpha\}$
c) $L_{3}=\{\alpha \mid \alpha$ has no occurrence of $b a b\}$
2. Deterministic Büchi Automata (Group G06, discussion session 12:00 with Felix Klein)

Let Σ be an alphabet of the form $\Sigma=\Sigma_{1} \times \Sigma_{2}=\left\{(a, b) \mid a \in \Sigma_{1}, b \in \Sigma_{2}\right\}$, where Σ_{1} and Σ_{2} are also alphabets. Let L be a language over the alphabet Σ. We define the projections $p r_{1}(L)$ and $p r_{2}(L)$ as follows:

$$
\begin{aligned}
& \operatorname{pr}_{1}(L)=\left\{u_{0} u_{1} u_{2} \ldots \in \Sigma_{1}^{\omega} \mid \exists v_{0} v_{1} v_{2} \ldots \in \Sigma_{2}^{\omega} \text { s.t. }\left(u_{0}, v_{0}\right)\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \ldots \in L\right\} \\
& p r_{2}(L)=\left\{v_{0} v_{1} v_{2} \ldots \in \Sigma_{2}^{\omega} \mid \exists u_{0} u_{1} u_{2} \ldots \in \Sigma_{1}^{\omega} \text { s.t. }\left(u_{0}, v_{0}\right)\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right) \ldots \in L\right\}
\end{aligned}
$$

Prove or give a counterexample to the following statements:
a) Deterministic Büchi automata are closed under \cap.
b) Deterministic Büchi automata are closed under \cup.
c) Deterministic Büchi automata are closed under $p r_{1}$.
3. Limit Operation (Group G11, discussion session 12:20 with Felix Klein)
a) Let $V, W \subseteq \Sigma^{*}$ be two regular languages. Prove or give a counterexample to the following equation:

$$
\overrightarrow{(V \cdot W)}=V \cdot \vec{W}
$$

b) Let $\mathcal{A}=\left(S,\left\{s_{0}\right\}, T, F\right)$ be an automaton on finite words. Let $L_{*}=\mathcal{L}(\mathcal{A})$ be the language of \mathcal{A} and let L_{ω} be the language of \mathcal{A} when it is regarded as a Büchi automaton. Prove or give a counterexample for the following equation:

$$
L_{\omega}=\overrightarrow{L_{*}}
$$

4. Universal Projection (Group G15, discussion session 12:40 with Hazem Torfah)

We define the following "universal flavor" of projection (for $i \in\{1,2\}$ and $L \subseteq\left(\Sigma_{1} \times \Sigma_{2}\right)^{\omega}$):

$$
r p_{i}(L)=\left\{\alpha^{\prime} \in \Sigma_{i}^{\omega} \mid \text { for every } \alpha \in\left(\Sigma_{1} \times \Sigma_{2}\right)^{\omega} \cdot p r_{i}(\alpha)=\alpha^{\prime} \Rightarrow \alpha \in L\right\}
$$

Show that if L is Büchi recognizable, then so is $r p_{1}(L)$.
Hint: You might want to use that the complement of any Büchi recognizable language is Büchi recognizable.

5. Projection and Büchi Recognizable Languages (Challenge)

(a) Prove that the projections $\operatorname{pr}_{1}(L)$ and $p r_{2}(L)$ of a Büchi recognizable language L on the alphabet $\Sigma_{1} \times \Sigma_{2}$ are Büchi recognizable.
(b) Prove that the converse of (a) is false: Construct a non-Büchi recognizable ω-language L such that both $p r_{1}(L)$ and $p r_{2}(L)$ are Büchi recognizable.
Hint: The language $L^{\prime}=\left\{a^{n} b^{n} \mid n=1,2,3, \ldots\right\}^{\omega}$ over the alphabet $\{a, b\}$ is not Büchi-recognizable. Some variation of L^{\prime} is useful to construct the required language L.

