Prof. Bernd Finkbeiner, Ph.D. Markus Rabe, M.Sc. Hazem Torfah, B.Sc. Felix Klein, B.Sc.

Automata, Games, and Verification

1. ω -Regular Expressions (Group G01, discussion session 12:00 with Hazem Torfah)

Represent each of the following ω -languages over the alphabet $\{a, b\}$ as a finite union of languages $V \cdot W^{\omega}$, where each V and W is recognizable by an automaton on finite words:

- a) $L_1 = \{ \alpha \mid \text{ the maximal substrings of } \alpha \text{ consisting of only } a's have even length \}$
- b) $L_2 = \{ \alpha \mid \text{ each } a \text{ is preceded by a } b \text{ in } \alpha \}$
- c) $L_3 = \{ \alpha \mid \alpha \text{ has no occurrence of } bab \}$
- 2. Deterministic Büchi Automata (Group G06, discussion session 12:00 with Felix Klein)

Let Σ be an alphabet of the form $\Sigma = \Sigma_1 \times \Sigma_2 = \{(a, b) \mid a \in \Sigma_1, b \in \Sigma_2\}$, where Σ_1 and Σ_2 are also alphabets. Let L be a language over the alphabet Σ . We define the *projections* $pr_1(L)$ and $pr_2(L)$ as follows:

$$pr_1(L) = \{ u_0 u_1 u_2 \dots \in \Sigma_1^{\omega} \mid \exists v_0 v_1 v_2 \dots \in \Sigma_2^{\omega} \text{ s.t. } (u_0, v_0)(u_1, v_1)(u_2, v_2) \dots \in L \}$$

$$pr_2(L) = \{ v_0 v_1 v_2 \dots \in \Sigma_2^{\omega} \mid \exists u_0 u_1 u_2 \dots \in \Sigma_1^{\omega} \text{ s.t. } (u_0, v_0)(u_1, v_1)(u_2, v_2) \dots \in L \}$$

Prove or give a counterexample to the following statements:

- a) Deterministic Büchi automata are closed under \cap .
- b) Deterministic Büchi automata are closed under \cup .
- c) Deterministic Büchi automata are closed under pr_1 .

3. Limit Operation (Group G11, discussion session 12:20 with Felix Klein)

a) Let $V, W \subseteq \Sigma^*$ be two regular languages. Prove or give a counterexample to the following equation:

$$\overrightarrow{(V \cdot W)} = V \cdot \overrightarrow{W}$$

b) Let $\mathcal{A} = (S, \{s_0\}, T, F)$ be an automaton on finite words. Let $L_* = \mathcal{L}(\mathcal{A})$ be the language of \mathcal{A} and let L_{ω} be the language of \mathcal{A} when it is regarded as a Büchi automaton. Prove or give a counterexample for the following equation:

$$L_{\omega} = \overline{L}'_*$$

,

4. Universal Projection (Group G15, discussion session 12:40 with Hazem Torfah)

We define the following "universal flavor" of projection (for $i \in \{1, 2\}$ and $L \subseteq (\Sigma_1 \times \Sigma_2)^{\omega}$):

$$rp_i(L) = \{ \alpha' \in \Sigma_i^{\omega} \mid \text{ for every } \alpha \in (\Sigma_1 \times \Sigma_2)^{\omega} . pr_i(\alpha) = \alpha' \Rightarrow \alpha \in L \}$$

Show that if L is Büchi recognizable, then so is $rp_1(L)$.

Hint: You might want to use that the complement of any Büchi recognizable language is Büchi recognizable.

5. Projection and Büchi Recognizable Languages (Challenge)

- (a) Prove that the projections $pr_1(L)$ and $pr_2(L)$ of a Büchi recognizable language L on the alphabet $\Sigma_1 \times \Sigma_2$ are Büchi recognizable.
- (b) Prove that the converse of (a) is false: Construct a non-Büchi recognizable ω -language L such that both $pr_1(L)$ and $pr_2(L)$ are Büchi recognizable.

Hint: The language $L' = \{a^n b^n | n = 1, 2, 3, ...\}^{\omega}$ over the alphabet $\{a, b\}$ is not Büchi-recognizable. Some variation of L' is useful to construct the required language L.