Automata, Games, and Verification

1. Alternating tree automata - part one

Describe alternating parity tree automata for the following tree languages:

- a) $L_1 = \{(T,\tau) \mid T \subseteq \{0,\ldots,3\}^*, \tau : T \to 2^{\{a,b,c\}}, \text{ whenever for a tree node } t \text{ in } (T,\tau) \text{ we have } c \in \tau(t), \text{ then } (1) \text{ there exists a branch in the tree on which } a \text{ is contained infinitely often in the label of the nodes and the branch contains } t, \text{ and } (2) \text{ there exists a branch in the tree on which } b \text{ is contained only finitely often in the label of the nodes and the branch contains } t\}.$
- b) $L_2 = \{(T, \tau) \mid T \subseteq \{0, \dots, 1\}^*, \tau : T \to \{a, b, c\}$, for every node t in the tree and $x \in \{a, b, c\}$, if there is some $t' \in \{0, 1\}^*$ with $t1t' \in T$ and $\tau(t1t') = x$, then there also exists some $t'' \in \{0, 1\}^*$ with $t0t'' \in T$ and $\tau(t0t'') = x\}$

2. Alternating tree automata - part two

Let a deterministic parity word automaton $\mathcal{A} = (S, I, T, c)$ over some alphabet Σ be given, and let $k = |\Sigma|$. Take for granted that all words in the language of \mathcal{A} start with the letter $a \in \Sigma$. Construct an alternating parity tree automaton over Σ -labeled trees that accepts precisely the trees over the set of directions $\mathcal{D} = \{0, \ldots, k - 1\}$ for which the set of its infinite branches represents (by their label sequences) precisely the set of words accepted by \mathcal{A} .

More formally, we search for an alternating tree automaton \mathcal{A}' over the set of directions $\mathcal{D} = \{0, \ldots, k-1\}$ such that \mathcal{A}' accepts precisely the Σ -labeled \mathcal{D} -trees (T, τ) for which $\{\tau(\epsilon)\tau(t_0)\tau(t_0t_1)\tau(t_0t_1t_2)\ldots | t_0t_1t_2\ldots \in \mathcal{D}^{\omega} \land \forall i \in \mathbb{N} : t_0t_1\ldots t_i \in T\}$ is the set of words accepted by \mathcal{A} .

Provide a procedure to construct such an automaton \mathcal{A}' from \mathcal{A} . Is it possible that \mathcal{A}' has an empty language even though \mathcal{A} does not?

3. CTL⁺

Consider the following fragment, called CTL^+ , of CTL^* , which extends CTL by allowing Boolean operators in path formulas:

• State formulas f:

 $f ::= AP \mid \neg f \mid f \lor g \mid A\varphi \mid E\varphi$

• Path formulas φ :

 $\varphi ::= \ \neg \varphi \mid \varphi \lor \psi \mid Gf \mid Ff \mid f \, Ug \mid Xf$

(Note: CTL* extends CTL⁺ by allowing to use state formulas f as one more alternative in the definition of path formulas φ .)

- a) Provide, if they exist, equivalent CTL and LTL formulas for the CTL⁺ formulas $A(F a \land G b)$ and $A(X a \land \neg(a U (G b)))$.
- b) Compare the expressive power of CTL⁺ with the expressive power of CTL and LTL.