Automata, Games, and Verification

1. Alternating tree automata - part one

Describe alternating parity tree automata for the following tree languages:
a) $L_{1}=\left\{(T, \tau) \mid T \subseteq\{0, \ldots, 3\}^{*}, \tau: T \rightarrow 2^{\{a, b, c\}}\right.$, whenever for a tree node t in (T, τ) we have $c \in \tau(t)$, then (1) there exists a branch in the tree on which a is contained infinitely often in the label of the nodes and the branch contains t, and (2) there exists a branch in the tree on which b is contained only finitely often in the label of the nodes and the branch contains $t\}$.
b) $L_{2}=\left\{(T, \tau) \mid T \subseteq\{0, \ldots, 1\}^{*}, \tau: T \rightarrow\{a, b, c\}\right.$, for every node t in the tree and $x \in\{a, b, c\}$, if there is some $t^{\prime} \in\{0,1\}^{*}$ with $t 1 t^{\prime} \in T$ and $\tau\left(t 1 t^{\prime}\right)=x$, then there also exists some $t^{\prime \prime} \in\{0,1\}^{*}$ with $t 0 t^{\prime \prime} \in T$ and $\left.\tau\left(t 0 t^{\prime \prime}\right)=x\right\}$

2. Alternating tree automata - part two

Let a deterministic parity word automaton $\mathcal{A}=(S, I, T, c)$ over some alphabet Σ be given, and let $k=|\Sigma|$. Take for granted that all words in the language of \mathcal{A} start with the letter $a \in \Sigma$. Construct an alternating parity tree automaton over Σ-labeled trees that accepts precisely the trees over the set of directions $\mathcal{D}=\{0, \ldots, k-1\}$ for which the set of its infinite branches represents (by their label sequences) precisely the set of words accepted by \mathcal{A}.
More formally, we search for an alternating tree automaton \mathcal{A}^{\prime} over the set of directions $\mathcal{D}=\{0, \ldots, k-$ $1\}$ such that \mathcal{A}^{\prime} accepts precisely the Σ-labeled \mathcal{D}-trees (T, τ) for which $\left\{\tau(\epsilon) \tau\left(t_{0}\right) \tau\left(t_{0} t_{1}\right) \tau\left(t_{0} t_{1} t_{2}\right) \ldots \mid\right.$ $\left.t_{0} t_{1} t_{2} \ldots \in \mathcal{D}^{\omega} \wedge \forall i \in \mathbb{N}: t_{0} t_{1} \ldots t_{i} \in T\right\}$ is the set of words accepted by \mathcal{A}.
Provide a procedure to construct such an automaton \mathcal{A}^{\prime} from \mathcal{A}. Is it possible that \mathcal{A}^{\prime} has an empty language even though \mathcal{A} does not?
3. $\mathbf{C T L}^{+}$

Consider the following fragment, called CTL^{+}, of CTL^{*}, which extends CTL by allowing Boolean operators in path formulas:

- State formulas f :

$$
f::=A P|\neg f| f \vee g|A \varphi| E \varphi
$$

- Path formulas φ :

$$
\varphi::=\neg \varphi|\varphi \vee \psi| G f|F f| f U g \mid X f
$$

(Note: CTL^{*} extends CTL^{+}by allowing to use state formulas f as one more alternative in the definition of path formulas φ.)
a) Provide, if they exist, equivalent CTL and LTL formulas for the CTL^{+}formulas $A(F a \wedge G b)$ and $A(X a \wedge \neg(a U(G b)))$.
b) Compare the expressive power of CTL^{+}with the expressive power of CTL and LTL.

