Automata, Games, and Verification

1. Deterministic tree automata (Group G08, discussion session 12:00 with Hazem Torfah)

Compare the expressive power of deterministic and non-deterministic parity tree automata. We call a parity tree automaton $\mathcal{A} = (S, s_0, M, c)$ over the alphabet Σ deterministic if for every $s \in S$ and $x \in \Sigma$, there exists at most one pair $(s_1, s_2) \in S^2$ such that $(s, x, s_1, s_2) \in M$.

2. Parity tree automata (Group G03, discussion session 12:00 with Felix Klein)

Give an algorithm which, given two parity tree automata A_1 and A_2 , computes a parity tree automaton A with $\mathcal{L}(A) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$.

3. Cylindrification (Group G12, discussion session 12:20 with Felix Klein)

Let L be a language of Σ_1 -trees. Let Σ_2 be a new alphabet. The Σ_1 -projection of a $(\Sigma_1 \times \Sigma_2)$ -tree v is a Σ_1 -tree v_1 such that for every $n \in \{0, 1\}^*$ there exists a $\sigma_2 \in \Sigma_2$ such that $v(n) = (v_1(n), \sigma_2)$. The cylinder of L is the set of $(\Sigma_1 \times \Sigma_2)$ -trees whose Σ_1 -projections belong to L.

Show that if L is recognized by some Muller tree automaton, then the cylinder of L is recognized by some Muller tree automaton.

4. From Muller to parity tree automata (Group G10, discussion session 12:20 with Hazem Torfah)

Show that for every Muller tree automaton \mathcal{A} there is a parity tree automaton \mathcal{B} with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{B})$.