Automata, Games, and Verification

1. Arena-preserving game conversions (Group G05, discussion session 12:00 with Felix Klein)

Let an arena $\mathcal{A} = (V_0, V_1, E)$ and a position $v_{in} \in V_0$ be given. Consider all combinations (a, b) of winning conditions from the list below. For which of the combinations does it hold that if you are given an *a*-type winning condition \mathcal{F} , you can always convert it to a *b*-type winning condition \mathcal{F}' such that the winning strategies for the two players from v_{in} in $(\mathcal{A}, \mathcal{F})$ are the same as from v_{in} in $(\mathcal{A}, \mathcal{F}')$?

List of winning condition types:

- Reachability games
- Büchi games
- Parity games
- Rabin games
- Muller games
- 2. Fair Simulation (Group G09, discussion session 12:00 with Hazem Torfah)

Simulation is often used as an efficient method to establish language containment between automata. *Fair simulation*, the commonly used type of simulation for Büchi automata, can be described as a game:

Given two Büchi automata $\mathcal{A} = (S_{\mathcal{A}}, \{i_{\mathcal{A}}\}, T_{\mathcal{A}}, F_{\mathcal{A}}), \mathcal{B} = (S_{\mathcal{B}}, \{i_{\mathcal{B}}\}, T_{\mathcal{B}}, F_{\mathcal{B}})$, the automaton \mathcal{B} simulates the automaton \mathcal{A} if player "Duplicator" wins the following game between Duplicator and a second player "Spoiler." The game is played in rounds, as follows: At the start, round 0, two pebbles, a and b, are placed on $i_{\mathcal{A}}$ and $i_{\mathcal{B}}$, respectively. Assume that, at the beginning of round n, pebble a is on state $q_n \in S_{\mathcal{A}}$ and pebble b is on state $q'_n \in S_{\mathcal{B}}$. Then:

- a) Spoiler chooses a transition $(q_n, l, q_{n+1}) \in T_A$ for some letter $l \in \Sigma$.
- b) Duplicator, responding, must chose a transition $(q'_n, l, q'_{n+1}) \in T_{\mathcal{B}}$. If no *l*-transition exists from q'_n , Spoiler wins the game at this point.

If a play is infinite, then the winner is determined according to the following rule: Duplicator wins if there are infinitely many j such that $q'_j \in F_B$ or there are only finitely many j such that $q_j \in F_A$.

- a) For two given Büchi automata \mathcal{A}, \mathcal{B} , reformulate this game as a parity game such that \mathcal{B} simulates \mathcal{A} iff player 1 wins the parity game (from some designated starting position).
- b) Show that fair simulation is a conservative test for language containment. I.e., show that if \mathcal{B} simulates \mathcal{A} , then $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{B})$, and give an example where $\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{B})$, but \mathcal{B} does not simulate \mathcal{A} .

3. Tree Automata (Group G14, discussion session 12:20 with Hazem Torfah)

a) Give a Büchi tree automaton for the language

 $L_1 = \{v \in T_{\{a,b\}} \mid \text{ there is a branch in } v \text{ with infinitely many } a\}$

b) Give a co-Büchi tree automaton for the language

 $L_2 = \{ v \in T_{\{a,b,c\}} \mid \text{ each branch in } v \text{ has at least one } a \\ \text{and the entire tree has at most one } b \}$

c) Give a Muller tree automaton for the language

 $L_3 = \{v \in T_{\{a,b\}} \mid \text{ each branch in } v \text{ has only finitely many } a\}$

4. Update Games (Challenge question)

Reconsider the class of update games that was defined on the previous problem sheet.

a) Prove the following:

If \mathcal{G} is an update game with a forced cycle of length ≥ 4 , then we can construct a new game \mathcal{G}' with fewer nodes, such that \mathcal{G} is an update network iff \mathcal{G}' is an update network.

b) Using this result, provide a decision procedure that determines whether an update game is an update network.