Automata, Games, and Verification: Lecture 9

Theorem 1 For every LTL formula φ, there is an alternating Büchi automaton \mathcal{A}_{φ} with $\mathcal{L}(\mathcal{A})=$ $\mathcal{L}(\varphi)$

Proof:

- $S=\operatorname{closure}(\varphi):=\{\psi, \neg \psi \mid \psi$ is subformula of $\varphi\}$;
- $s_{0}=\varphi$;
- $\delta(p, a)=$ true if $p \in a$, false if $p \notin a$; $\delta(\neg p, a)=$ false if $p \in a$, true if $p \notin a$; $\delta($ true,$a)=$ true; $\delta($ false, a $)=$ false;
- $\delta\left(\psi_{1} \wedge \psi_{2}, a\right)=\delta\left(\psi_{1}, a\right) \wedge \delta\left(\psi_{2}, a\right) ;$
- $\delta\left(\psi_{1} \vee \psi_{2}, a\right)=\delta\left(\psi_{1}, a\right) \vee \delta\left(\psi_{2}, a\right)$;
- $\delta(\mathrm{X} \psi, a)=\psi$;
- $\delta\left(\psi_{1} \mathcal{U} \psi_{2}, a\right)=\delta\left(\psi_{2}, a\right) \vee\left(\delta\left(\psi_{1}, a\right) \wedge \psi_{1} \mathcal{U} \psi_{2}\right)$;
- $\delta(\neg \psi, a)=\overline{\delta(\psi, a)}$;
- $\bar{\psi}=\neg \psi$ for $\psi \in S$;
- $\overline{\neg \psi}=\psi$ for $\psi \in S$;
- $\overline{\alpha \wedge \beta}=\bar{\alpha} \vee \bar{\beta} ;$
- $\overline{\alpha \vee \beta}=\bar{\alpha} \wedge \bar{\beta}$;
- $\overline{\text { true }}=$ false;
- $\overline{\text { false }}=$ true;
- $F=\left\{\neg\left(\psi_{1} \mathcal{U} \psi_{2}\right) \in \operatorname{closure}(\varphi)\right\}$

For a subformula ψ of φ let $\mathcal{A}_{\varphi}^{\psi}$ be the automaton A_{φ} with initial state ψ.
Claim: $\mathcal{L}\left(\mathcal{A}_{\varphi}^{\psi}\right)=\mathcal{L}(\psi)$. Proof by structural induction.
Definition 1 Two nodes $x_{1}, x_{2} \in T$ in a run tree (T, r) are similar if $\left|x_{1}\right|=\left|x_{2}\right|$ and $r\left(x_{1}\right)=r\left(x_{2}\right)$.
Definition 2 A run tree (T, r) is memoryless iffor all similar nodes x_{1} and x_{2} and for all $y \in D^{*}$ we have that $\left(x_{1} \cdot y \in T\right.$ iff $\left.x_{2} \cdot y \in T\right)$ and $r\left(x_{1} \cdot y\right)=r\left(x_{2} \cdot y\right)$.

Theorem 2 If an alternating Büchi Automaton \mathcal{A} accepts a word α, then there exists a memoryless accepting run of \mathcal{A} on α.

Proof:

- Let (T, r) be an accepting run tree on α with directions D.
- We define $\gamma: T \rightarrow \omega$ (measures the number of steps since the last visit to F):
$-\gamma(\varepsilon)=0$
$-\gamma(n \cdot d)= \begin{cases}\gamma(n)+1 & \text { if } r(n) \notin F ; \\ 0 & \text { otherwise; }\end{cases}$
- We define $\Delta: S \times \omega \rightarrow T$:
$\Delta(s, n)=$ leftmost $y \in T$ with $|y|=n, r(y)=s$ and $(\forall z \in T,|z|=n \wedge r(z)=s \Rightarrow$ $\gamma(z) \leq \gamma(y)$).
- We define $\left(T^{\prime}, r^{\prime}\right)$:
$-\varepsilon \in T^{\prime}, r^{\prime}(\varepsilon)=r(\varepsilon)$;
- for $n \in T^{\prime}, d \in D$,
$n \cdot d \in T^{\prime}$ iff $\Delta\left(r^{\prime}(n),|n|\right) \cdot d \in T$;
$r^{\prime}(n \cdot d)=r\left(\Delta\left(r^{\prime}(n),|n|\right) \cdot d\right)$
Claim 1: $\left(T^{\prime}, r^{\prime}\right)$ is a run of \mathcal{A} on α.
- $r^{\prime}(\varepsilon)=r(\varepsilon)=s_{0}$
- For $n \in T^{\prime}$, let $q_{n}=\Delta\left(r^{\prime}(n),|n|\right)$.
- For every $n \in T^{\prime},\left\{r\left(q_{n} \cdot d\right) \mid d \in D, q_{n} \cdot d \in T\right\} \vDash \delta\left(r\left(q_{n}\right), \alpha\left(\left|q_{n}\right|\right)\right)$ and therefore $\left\{r^{\prime}(n \cdot d) \mid d \in D, n \cdot d \in T^{\prime}\right\} \vDash \delta\left(r^{\prime}(n), \alpha(|n|)\right)$.

Claim 2: If (T, r) is accepting, then so is $\left(T^{\prime}, r^{\prime}\right)$. Proof by contradiction:

- Claim 2.1 : For every $n \in T^{\prime}, \gamma(n) \leq \gamma\left(\Delta\left(r^{\prime}(n),|n|\right)\right)$. Proof by induction on the length of n :
- for $n=\varepsilon, \gamma(n)=0$
- for $n=n^{\prime} \cdot d$ (where $\left.d \in D\right)$,
* if $r\left(n^{\prime}\right) \in F$, then $\gamma(n)=0$
* if $r\left(n^{\prime}\right) \notin F$, then

$$
\begin{array}{ll}
\gamma\left(\Delta\left(r^{\prime}\left(n^{\prime} \cdot d\right),\left|n^{\prime} \cdot d\right|\right)\right) \\
\geq & (\Delta \text { definition }) \\
& \gamma\left(\Delta\left(r^{\prime}\left(n^{\prime}\right),\left|n^{\prime}\right|\right) \cdot d\right) \\
= & (\gamma \text { definition }) \\
& 1+\gamma\left(\Delta\left(r^{\prime}\left(n^{\prime}\right),\left|n^{\prime}\right|\right)\right) \\
\geq & \quad(\text { induction hypothesis }) \\
& 1+\gamma\left(n^{\prime}\right) \\
= & (\gamma \text { definition }) \\
& \gamma\left(n^{\prime} \cdot d\right)
\end{array}
$$

- Suppose (T^{\prime}, r^{\prime}) is not accepting, then there is an infinite branch $\pi: n_{0}, n_{1}, n_{2}, \ldots \epsilon$ T^{\prime} and $\exists k \in \omega$ such that $\forall j \geq k: r^{\prime}\left(b_{j}\right) \notin F$.
- Let $m_{i}=\Delta\left(r^{\prime}\left(n_{i}\right),\left|n_{i}\right|\right)$ for $i \geq k$.
- We have,

$$
\begin{aligned}
\gamma\left(n_{k}\right) & <\gamma\left(n_{k+1}\right) \\
/ \Lambda & <\ldots \\
\gamma\left(m_{k}\right) & <\gamma\left(m_{k+1}\right)
\end{aligned}
$$

So, for any $k^{\prime}>k, \gamma\left(m_{k}\right) \geq k^{\prime}-k$.
Since T is finitely branching, there must be a branch with an infinite suffix of non- F labeled positions. This contradicts our assumption that (T, r) is accepting.

Definition 3 A run DAG of an alternating Büchi Automaton \mathcal{A} on word α is a $\operatorname{DAG}(V, E)$, where

- $V \subseteq S \times \omega$
- $E \subseteq \bigcup_{i \epsilon \omega}(S \times\{i\}) \times(S \times\{i+1\}) ;$
- $\left(s_{0}, 0\right) \in V$
- $\forall(s, i) \in V . \exists Y \subseteq S$ s.t.
$Y \vDash \delta(s, \alpha(i)), Y \times\{i+1\} \subseteq V$ and $\{(s, i)\} \times(Y \times\{i+1\}) \subseteq E$.

Example:

Notation: Level $((V, E), i)=\{s \in S \mid(s, i) \in V\}$
Definition 4 A run DAG is accepting if every infinite path has infinitely many visits to $F \times \omega$.
Corollary $1 A$ word α is accepted by an alternating Büchi automaton \mathcal{A} iff \mathcal{A} has an accepting run DAG on α.

Theorem 3 (Miyano and Hayashi, 1984) For every alternating Büchi automaton \mathcal{A}, there exists a nondeterministic Büchi automaton \mathcal{A}^{\prime} with $\mathcal{L}(\mathcal{A})=\mathcal{L}\left(\mathcal{A}^{\prime}\right)$.

Proof:

- $S^{\prime}=2^{S} \times 2^{S}$;
- $I^{\prime}=\left\{\left(\left\{s_{0}\right\}, \varnothing\right)\right\} ;$
- $F^{\prime}=\{(X, \varnothing) \mid X \subseteq S\}$;
- $T^{\prime}=\left\{\left((X, \varnothing), \sigma,\left(X^{\prime}, X^{\prime}-F\right)\right) \mid X^{\prime} \vDash \wedge_{s \in X} \delta(s, \sigma)\right\}$
$\cup\left\{\left((x, W), \sigma,\left(X^{\prime}, W^{\prime} \backslash F\right)\right) \mid W \neq \varnothing, W^{\prime} \subseteq X^{\prime}, X^{\prime} \vDash \bigwedge_{s \in X} \delta(s, \sigma)\right.$, $\left.W^{\prime} \vDash \bigwedge_{s \in W} \delta(s, \sigma)\right\}$.
$\mathcal{L}\left(\mathcal{A}^{\prime}\right) \subseteq \mathcal{L}(\mathcal{A}):$
- Let $\alpha \in L\left(\mathcal{A}^{\prime}\right)$ with accepting run

$$
r^{\prime}:\left(X_{0}, W_{0}\right)\left(X_{1}, W_{1}\right)\left(X_{2}, W_{2}\right) \ldots
$$

where $W_{0}=\varnothing, X_{0}=\left\{s_{0}\right\}$.

- We construct the run $\operatorname{DAG}(V, E)$ for \mathcal{A} on α :
- $V=\bigcup_{i \epsilon \omega} X_{i} \times\{i\} ;$
- $E=\bigcup_{i \in \omega} \quad\left(\bigcup_{x \in X_{i} \backslash W_{i}}\{(x, i)\} \times\left(X_{i+1} \times\{i+1\}\right)\right)$

$$
\cup\left(\cup_{x \in W_{i}}\{(x, i)\} \times\left(\left(X_{i+1} \cap\left(F \cup W_{i+1}\right)\right) \times\{i+1\}\right)\right) .
$$

- (V, E) is an accepting run DAG:
- $\left(s_{0}, 0\right) \in V$;
- for $(x, i) \in V$:
* if $x \in X_{i} \backslash W_{i}, X_{i+1} \vDash \delta(x, \alpha(i))$;
* if $x \in W_{i}, X_{i+1} \cap\left(F \cup W_{i+1}\right) \vDash \delta(x, \alpha(i))$.
- Every path through the run DAG visits F infinitely often (otherwise $W_{i}=\varnothing$ only for finitely many i).
$\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}\left(\mathcal{A}^{\prime}\right):$
- Let $\alpha \in L\left(A^{\prime}\right)$ and (V, E) an accepting run DAG of \mathcal{A} on α.
- We construct a run

$$
r^{\prime}:\left(X_{0}, W_{0}\right)\left(X_{1}, W_{1}\right)\left(X_{2}, W_{2}\right) \ldots
$$

on \mathcal{A}^{\prime} as follows:

- $X_{0}=\left\{s_{0}\right\}, W_{0}=\varnothing$;
- for $i>0, X_{i}=\operatorname{Level}((V, E), i)$
* if $W_{i}=\varnothing$ then $W_{i+1}=X_{i+1} \backslash F$,
* otherwise,

$$
W_{i+1}:=\left\{y^{\prime} \in S \backslash F \mid \exists(y, i) \in V,\left((y, i),\left(y^{\prime}, i+1\right)\right) \in E, y \in W_{i}\right\} .
$$

- r^{\prime} is an accepting run:
- starts with $\left(\left\{s_{0}\right\}, \varnothing\right)$
- obeys T^{\prime} :
* for $x \in X_{i} \backslash W_{i}, X_{i+1} \vDash \delta(x, \alpha(i))$;
* for $x \in W_{i}, X_{i+1} \cap\left(F \cup W_{i+1}\right) \vDash \delta(x, \alpha(i))$.
- r^{\prime} is accepting (otherwise there exists a path in (V, E) that is not accepting).

Example: We translate the following universal automaton (all branchings are conjunctions) into an equivalent nondeterministic automaton:

Corollary 2 A language is ω-regular iff it is recognizable by an alternating Büchi automaton.

Proof:

Translation from nondeterministic Büchi automaton ($S,\left\{s_{0}\right\}, T, F$) to alternating Büchi automaton $\left(S, s_{0}, \delta, F\right)$ with

$$
\text { - } \delta(s, \sigma)=\underset{s^{\prime} \in \notin r_{3}(T \cap\{s\} \times\{\sigma\} \times S)}{\bigvee} s^{\prime} \quad \text { for all } s \in S
$$

Comment: Acceptance of a word α by an alternating Büchi automaton can also be characterized as a game:

- Positions of Player o: $V_{0}=S \times \omega$;
- Positions of Player 1: $V_{1}=2^{S} \times \omega$;
- Edges: $\{((s, i),(X, i)) \mid X \vDash \delta(s, \alpha(i))\}$ $\cup\{((X, i),(s, i+1)) \mid s \in X\}$

Player o wins a play iff $F \times \omega$ is visited infinitely often.
The word α is accepted iff Player o has a strategy to win the game from position $\left(s_{0}, 0\right)$.

