Automata, Games, and Verification: Lecture 8

Definition 1 For a SiS formula $\varphi, \mathcal{L}(\varphi)=\left\{\alpha_{\sigma_{1}, \sigma_{2}} \in\left(2^{V_{1} \cup V_{2}}\right)^{\omega} \mid \sigma_{1}, \sigma_{2} \vDash \varphi\right\}$, where $x \in \alpha(j)$ iff $j=\sigma_{1}(x)$, and $X \in \alpha(j)$ iff $j \in \sigma_{2}(X)$.

Definition 2 A language L is LTL/QPTL/SIS-definable if there is a LTL/QPTL/SIS formula φ with $\mathcal{L}(\varphi)=L$.

Theorem 1 Every QPTL-definable language is SIS-definable.

Proof:

For every QPTL-formula φ over AP and every SiS-term t over $V_{1}=\varnothing$, we define a SiS formula $T(\varphi, t)$ over $V_{2}=A P$ such that, for all $\alpha \in\left(2^{A P}\right)^{\omega}$,

$$
\alpha\left[[t]_{\sigma_{1} . .}\right] \vDash_{\mathrm{QPTL}} \varphi \quad \text { iff } \quad \sigma_{1}, \sigma_{2} \vDash_{\mathrm{S}_{1} \mathrm{~S}} T(\varphi, t),
$$

where $\sigma_{2}: P \mapsto\{i \in \omega \mid P \in \alpha(i)\}$.

- $T(P, t)=t \in P$, for $P \in A P$;
- $T(\neg \varphi, t)=\neg T(\varphi, t)$;
- $T(\varphi \vee \psi, t)=T(\varphi, t) \vee T(\psi, t)$
- $T(\mathrm{X} \varphi, t)=T(\varphi, S(t))$
- $T(\varphi \mathcal{U} \psi, t)=\exists y .(y \geq t \wedge T(\psi, y) \wedge \neg \exists z .(t \leq z<y \wedge T(\neg \varphi, z)))$
- $T(\exists P \varphi, t)=\exists P . T(\varphi, t)$.
$\mathcal{L}(\varphi)=\mathcal{L}(T(\varphi, 0))$.
Theorem 2 Every SIS-definable language is Büchi-recognizable.

Proof:

Let φ be a SıS-formula.

1. Rewrite φ into normal form

$$
\begin{aligned}
\varphi::= & 0 \in X|x \in Y| x=0|x=y| x=S(y) \mid \\
& \neg \varphi|\varphi \vee \psi| \exists x . \varphi \mid \exists X . \varphi .
\end{aligned}
$$

using the following rewrite rules:

$$
\begin{aligned}
S(t) \in X & \mapsto \exists y \cdot y=S(t) \wedge y \in X \\
S(t)=S\left(t^{\prime}\right) & \mapsto t=t^{\prime} \\
S(t)=x & \mapsto x=S(t) \\
t=S\left(S\left(t^{\prime}\right)\right) & \mapsto \exists y \cdot y=S\left(t^{\prime}\right) \wedge t=S(y)
\end{aligned}
$$

2. Rename bound variables to obtain unique variables.

Example:

$$
\exists x \cdot\left(S(S(y))=x \wedge \exists x\left(S(x) \in X_{0}\right)\right)
$$

is rewritten to

$$
\exists x_{0} \cdot \exists x_{1} \cdot x_{0}=S\left(x_{1}\right) \wedge x_{1}=S(y) \wedge \exists x_{2} \exists x_{3} \cdot x_{3}=S\left(x_{2}\right) \wedge x_{3} \in X_{0}
$$

3. Construct Büchi automaton:

Base cases:

- $0 \in X$:

For every $x \in V_{1}$, intersect with \mathcal{A}_{x} :

- $x \in Y$:

- $x=0$:

- $x=y$:

$$
\{A \mid\{x, y\} \cap A=\varnothing\} \quad\{A \mid\{x, y\} \cap A=\varnothing\}
$$

- $x=S(y)$:

Inductive step:

- $\varphi \vee \psi$: language union,
- $\neg \varphi$: complement and intersection with all \mathcal{A}_{x},
- $\exists x . \varphi, \exists X . \varphi$: projection

10 Weak Monadic Second-Order Theory of One Successor (WS1S)

Syntax: same as $\mathrm{S}_{1} \mathrm{~S}$;

Semantics: same as $\mathrm{S}_{1} \mathrm{~S}$; except:
$\sigma_{1}, \sigma_{2} \vDash \exists X$. φ iff there is a finite $A \subseteq \omega$ s.t.

$$
\sigma_{2}^{\prime}(Y)=\left\{\begin{array}{l}
\sigma_{2}(Y) \text { if } Y \neq X \\
A \text { otherwise }
\end{array}\right.
$$

and $\sigma_{1}, \sigma_{2}^{\prime} \vDash \varphi$.

Theorem 3 A language is WS1S-definable iff it is S1S-definable.

Proof:

(\Rightarrow) : Quantifier relativization:

$$
\begin{array}{ll}
\forall X \ldots & \mapsto \\
\exists X \ldots & \mapsto \quad \exists X . \operatorname{Fin}(X) \rightarrow \ldots \\
\exists & \mapsto(X) \wedge \ldots
\end{array}
$$

$(\Leftarrow):$

- Let φ be an SiS-formula.
- Let \mathcal{A} be a Büchi automaton with $\mathcal{L}(\mathcal{A})=\mathcal{L}(\varphi)$.
- Let \mathcal{A}^{\prime} be a deterministic Muller automaton with $\mathcal{L}\left(\mathcal{A}^{\prime}\right)=\mathcal{L}(\mathcal{A})$.
- By the characterization of deterministic Muller languages, $\mathcal{L}\left(\mathcal{A}^{\prime}\right)$ is a boolean combination of languages \vec{W}, where W is finite-word recognizable.
- For a finite-word language W, recognizable by a finite automaton $\mathcal{A}=(S, I, T, F)$, where $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$, we define a WSiS formula $\psi_{W}(y)$ over $V_{2}=A P \cup\left\{A t_{s_{1}}, \ldots, A t_{s_{n}}\right\}$ that defines the words whose prefix up to position y is in W :

$$
\begin{aligned}
\psi_{W}(y):= & \exists A t_{s_{1}}, \ldots, A t_{s_{n}} \\
& \bigvee_{s \in I} 0 \in A t_{s} \\
& \wedge \forall x<y\left(\bigvee_{\left(s_{i}, A, s_{j}\right) \in T}\left(x \in A t_{s_{i}} \wedge S(x) \in A t_{s_{j}} \wedge \bigwedge_{P \in A} x \in P \wedge \bigwedge_{P \in A P \backslash A} x \notin P\right)\right) \\
& \wedge \forall x \leq y\left(\bigwedge_{i \neq j} \neg\left(x \in A t_{s_{i}} \wedge x \in A t_{s_{j}}\right)\right) \\
& \wedge \bigvee_{s_{i} \in F} y \in A t_{s_{i}}
\end{aligned}
$$

- then, the WS1S formula $\varphi_{W}:=\forall x . \exists y .(x<y \wedge \psi(y))$ defines the words in \vec{W}.
- Hence, $\mathcal{L}(\varphi)$ is WSıS-definable.

11 Alternating Automata

Example:

- Nondeterministic automaton, $L=a(a+b)^{\omega}$, disjunctive branching mode:

- universal automaton, $L=a^{\omega}$, conjunctive branching mode:

- Alternating automaton, both branching modes (arc between edges indicates universal branching mode), $L=a a(a+b)^{\omega}$

Definition 3 The positive Boolean formulas over a set X, denoted $\mathbb{B}^{+}(X)$, are the formulas built from elements of X, conjunction \wedge, disjunction \vee, true and false.

Definition $4 A$ set $Y \subseteq X$ satisfies a formula $\varphi \in B^{+}(X)$, denoted $Y \vDash \varphi$, iff the truth assignment that assigns true to the members of Y and false to the members of $X \backslash Y$ satisfies φ.

Definition 5 An alternating Büchi automaton is a tuple $\mathcal{A}=\left(S, s_{0}, \delta, F\right)$, where:

- S is a finite set of states,
- $s_{0} \in S$ is the initial state,
- $F \subseteq S$ is the set of accepting states, and
- $\delta: S \times \Sigma \rightarrow \mathbb{B}^{+}(S)$ is the transition function.

A tree T over a set of directions D is a prefix-closed subset of D^{*}. The empty sequence ε is called the root. The children of a node $n \in T$ are the nodes children $(n)=\{n \cdot d \in T \mid d \in D\}$. A Σ-labeled tree is a pair (T, l), where $l: T \rightarrow \Sigma$ is the labeling function.

Definition 6 A run of an alternating automaton on a word $\alpha \in \Sigma^{\omega}$ is an S-labeled tree $\langle T, r\rangle$ with the following properties:

- $r(\varepsilon)=s_{0}$ and
- for all $n \in T$, if $r(n)=s$, then $\left\{r\left(n^{\prime}\right) \mid n^{\prime} \in \operatorname{children}(n)\right\}$ satisfies $\delta(s, \alpha(|n|))$.

Example: $L=\left(\{a, b\}^{*} b\right)^{\omega}$

$S=\{p, q\}$
$F=\{p\}$
$\delta(p, a)=p \wedge q$
$\delta(p, b)=p$
$\delta(q, a)=q$
$\delta(q, b)=\mathrm{T}$
example word $w=(a a b)^{\omega}$ produces this run:

(The dotted line means that the same tree would repeat there. Note that, in general, an alternating automaton may also have more than one run on a particular word-or no run at all.)

Definition $7 A$ branch of a tree T is a maximal sequence of words $n_{0} n_{1} n_{2} \ldots$ such that $n_{0}=\varepsilon$ and n_{i+1} is a child of n_{i} for $i \geq 0$.

Definition 8 A run (T, r) is accepting iff, for every infinite branch $n_{0} n_{1} n_{2} \ldots$,

$$
\operatorname{In}\left(r\left(n_{0}\right) r\left(n_{1}\right) r\left(n_{2}\right) \ldots\right) \cap F \neq \varnothing .
$$

