Automata, Games, and Verification: Lecture 4

Let G^{\prime} be a subgraph of G. We call a vertex $\langle s, l\rangle$

- safe in G^{\prime} if for all vertices $\left\langle s^{\prime}, l^{\prime}\right\rangle$ reachable from $\langle s, l\rangle, s^{\prime} \notin F$, and
- endangered in G^{\prime} if only finitely many vertices are reachable.

We define an infinite sequence $G_{0} \supseteq G_{1} \supseteq G_{2} \supseteq \ldots$ of DAGs inductively as follows:

- $G_{0}=G$
- $G_{2 i+1}=G_{2 i} \backslash\left\{\langle s, l\rangle \mid\langle s, l\rangle\right.$ is endangered in $\left.G_{2 i}\right\}$
- $G_{2 i+2}=G_{2 i+1} \backslash\left\{\langle s, l\rangle \mid\langle s, l\rangle\right.$ is safe in $\left.G_{2 i+1}\right\}$.

Example:

- no endangered vertices in G;
- safe in G_{1};
- endangered in G_{2};
- safe in G_{3};
- all remaining vertices are endangered in G_{4}.

Lemma 1 If \mathcal{A} does not accept α, then the following holds: For every $i \geq 0$ there exists an l_{i} such that for all $j \geq l_{i}$ at most $|S|-i$ vertices of the form $\left\langle{ }_{-}, j\right\rangle$ are in $G_{2 i}$.

Proof:

Proof by induction on i :

- $i=0$: In G, for every l, there are at most $|S|$ vertices of the form $\left\langle{ }_{-}, l\right\rangle$.
- $i \rightarrow i+1$:
- Case $G_{2 i}$ is finite: then $G_{2(i+1)}$ is empty.
- Case $G_{2 i}$ is infinite:
* There must exist a safe vertex $\langle s, l\rangle$ in $G_{2 i+1}$. (Otherwise, we can construct a path in G with infinitely many visits to F).
* We choose $l_{i+1}=l$.
* We prove that for all $j \geq l$, there are at most $|S|-(i+1)$ vertices of the form $\langle-, j\rangle$ in $G_{2 i+2}$.
- Since $\langle s, l\rangle \in G_{2 i+1}$, it is not endangered in $G_{2 i}$.
- Hence, there are infinitely many vertices reachable from $\langle s, l\rangle$ in $G_{2 i}$.
- By König's Lemma, there exists an infinite path $p=\langle s, l\rangle,\left\langle s_{1}, l+1\right\rangle,\langle s, l+$ $2\rangle, \ldots$ in $G_{2 i}$.
- No vertex on p is endangered (there is an infinite path). Therefore, p is in $G_{2 i+1}$.
- All vertices on p are safe $\left(\langle s, l\rangle\right.$ is safe) in $G_{2 i+1}$. Therefore, none of the vertices on p are in $G_{2 i+2}$.
- Hence, for all $j \geq l$, the number of vertices of the form $\left\langle{ }_{-}, l\right\rangle$ in $G_{2 i+2}$ is strictly smaller than their number in $G_{2 i}$.

Lemma 2 If \mathcal{A} does not accept α, then there exists an odd ranking for G.

Proof:

- We define $f(\langle s, l\rangle)=2 i$ if $\langle s, l\rangle$ is endangered in $G_{2 i}$ and
- $f(\langle s, l\rangle)=2 i+1$ if $\langle s, l\rangle$ is safe in $G_{2 i+1}$.
- f is a ranking:
- by Lemma $1, G_{j}$ is empty for $j>2 \cdot|S|$. Hence, $f: V \rightarrow\{0, \ldots, 2 \cdot|S|\}$.
- if $\left\langle s^{\prime}, l^{\prime}\right\rangle$ is a successor of $\langle s, l\rangle$, then $f\left(\left\langle s^{\prime}, l^{\prime}\right\rangle\right) \leq f(\langle s, l\rangle)$
* Let $j:=f(\langle s, l\rangle)$.
* Case j is even: vertex $\langle s, l\rangle$ is endangered in G_{j}; hence either $\left\langle s^{\prime}, l^{\prime}\right\rangle$ is not in G_{j}, and therefore $f(\langle s, l\rangle)<j$; or $\left\langle s^{\prime}, l^{\prime}\right\rangle$ is in G_{j} and endangered; hence, $f(\langle s, l\rangle)=j$.
* Case j is odd: vertex $\langle s, l\rangle$ is safe in G_{j}; hence either $\left\langle s^{\prime}, l^{\prime}\right\rangle$ is not in G_{j}, and therefore $f(\langle s, l\rangle)<j$; or $\left\langle s^{\prime}, l^{\prime}\right\rangle$ is in G_{j} and safe; hence, $f(\langle s, l\rangle)=j$.
- f is an odd ranking:
* For every path $\left\langle s_{0}, l_{0}\right\rangle,\left\langle s_{1}, l_{1}\right\rangle,\left\langle s_{2}, l_{2}\right\rangle, \ldots$ in G there exists an $i \geq 0$ such that for all $j \geq 0, f\left(\left\langle s_{i+j}, l_{i+j}\right\rangle\right)=f\left(\left\langle s_{i}, l_{i}\right\rangle\right)$.
* Suppose that $k:=f\left(\left\langle s_{i}, l_{i}\right\rangle\right)$ is even. Thus, $\left\langle s_{i}, l_{i}\right\rangle$ is endangered in G_{k}.
* Since $f\left(\left\langle s_{i+j}, l_{i+j}\right\rangle\right)=k$ for all $j \geq 0$, all $\left\langle s_{i+j}, l_{i+j}\right\rangle$ are in G_{k}.
* This contradicts that $\left\langle s_{i}, l_{i}\right\rangle$ is endangered in G_{k}.

Theorem 1 For each Büchi automaton \mathcal{A} there exists a Büchi automaton \mathcal{A}^{\prime} such that $\mathcal{L}\left(\mathcal{A}^{\prime}\right)=$ $\Sigma^{\omega} \backslash \mathcal{L}(\mathcal{A})$.

Helpful definitions:

- A level ranking is a function $g: S \rightarrow\{0, \ldots, 2 \cdot|S|\} \cup\{\perp\}$ such that if $g(s)$ is odd, then $s \notin F$.
- Let \mathcal{R} be the set of all level rankings.
- A level ranking g^{\prime} covers a level ranking g if, for all $s, s^{\prime} \in S$, if $g(s) \neq \perp$ and $\left(s, \sigma, s^{\prime}\right) \in T$, then $\perp \neq g^{\prime}\left(s^{\prime}\right) \leq g(s)$.

Proof:

We define $\mathcal{A}^{\prime}=\left(S^{\prime}, I^{\prime}, T^{\prime}, F^{\prime}\right)$ with

- $S^{\prime}=\mathcal{R} \times 2^{S}$;
- $I^{\prime}=\left\{\left\langle g_{0}, \varnothing\right\rangle \mid g_{0} \in \mathcal{R}, g_{0}(s)=\perp\right.$ iff $\left.s \notin I\right\}$;
- $T=\left\{\left(\langle g, \varnothing\rangle, \sigma,\left\langle g^{\prime}, P^{\prime}\right\rangle\right) \mid g^{\prime}\right.$ covers g, and $P^{\prime}=\left\{s^{\prime} \in S \mid g^{\prime}\left(s^{\prime}\right)\right.$ is even $\left.\}\right\}$
$\cup\left\{\left(\langle g, P\rangle, \sigma,\left\langle g^{\prime}, P^{\prime}\right\rangle\right) \mid P \neq \varnothing, g^{\prime}\right.$ covers g, and $P^{\prime}=\left\{s^{\prime} \in S \mid\left(s, \sigma, s^{\prime}\right) \in T, s \in P, g^{\prime}\left(s^{\prime}\right)\right.$ is even $\left.\}\right\} ;$
- $F=\mathcal{R} \times\{\varnothing\}$.
(Intuition: \mathcal{A}^{\prime} guesses the level rankings for the run DAG. The P component tracks the states whose corresponding vertices in the run DAG have even ranks. Paths that traverse such vertices should eventually reach a vertex with odd rank. The acceptance condition ensures that all paths visit a vertex with odd rank infinitely often.)
$\mathcal{L}\left(\mathcal{A}^{\prime}\right) \subseteq \Sigma^{\omega} \backslash \mathcal{L}(\mathcal{A}):$
- Let $\alpha \in \mathcal{L}\left(\mathcal{A}^{\prime}\right)$ and let $r^{\prime}=\left(g_{0}, P_{0}\right),\left(g_{1}, P_{1}\right), \ldots$ be an accepting run of \mathcal{A}^{\prime} on α.
- Let $G=(V, E)$ be the run DAG of \mathcal{A} on α.
- The function $f:\langle s, l\rangle \mapsto g_{l}(s), s \in S_{l}, l \in \omega$ is a ranking for G :
- if $g_{i}(s)$ is odd then $s \notin F$;
- for all $\left(\langle s, l\rangle,\left\langle s^{\prime}, l+1\right\rangle\right) \in E, g_{l+1}\left(s^{\prime}\right) \leq g_{l}(s)$.
- f is an odd ranking:
- Assume otherwise. Then there exists a path $\left\langle s_{0}, l_{0}\right\rangle,\left\langle s_{1}, l_{1}\right\rangle,\left\langle s_{2}, l_{2}\right\rangle, \ldots$ in G such that for infinitely many $i \in \omega, f\left(\left\langle s_{i}, l_{i}\right\rangle\right)$ is even.
- Hence, there exists an index $j \in \omega$, such that $f\left(\left\langle s_{j}, l_{j}\right\rangle\right)$ is even and, for all $k \geq 0$, $f\left(\left\langle s_{j+k}, l_{j+k}\right\rangle\right)=f\left(\left\langle s_{j}, l_{j}\right\rangle\right)$.
- Since r^{\prime} is accepting, $P_{j^{\prime}}=\varnothing$ for infinitely many j^{\prime}. Let j^{\prime} be the smallest such index $\geq j$.
- $P_{j^{\prime}+1+k} \neq \varnothing$ for all $k \geq 0$.
- Contradiction.
- Since there exists an odd ranking, $\alpha \notin \mathcal{L}(\mathcal{A})$.
$\Sigma^{\omega} \backslash \mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}\left(\mathcal{A}^{\prime}\right):$
- Let $\alpha \in \Sigma^{\omega} \backslash \mathcal{L}(\mathcal{A})$ and let $G=(V, E)$ be the run DAG of \mathcal{A} on α.
- There exists an odd ranking f on G.
- There is a run $r^{\prime}=\left(g_{0}, P_{0}\right),\left(g_{1}, P_{1}\right), \ldots$ of \mathcal{A}^{\prime} on α, where

$$
\begin{aligned}
& g_{l}(s)= \begin{cases}f(\langle s, l\rangle) & \text { if } s \in S_{l} ; \\
\perp & \text { otherwise; }\end{cases} \\
& P_{0}=\varnothing, \\
& P_{l+1}= \begin{cases}\left\{s \in S \mid g_{l+1}(s) \text { is even }\right\} & \text { if } P_{l}=\varnothing, \\
\left\{s^{\prime} \in S \mid \exists s \in S_{l} \cap P_{l} .\left(\langle s, l\rangle,\left\langle s^{\prime}, l+1\right\rangle\right) \in E, g_{l+1}\left(s^{\prime}\right) \text { is even }\right\} & \text { otherwise. }\end{cases}
\end{aligned}
$$

- r^{\prime} is accepting. (Assume there is an index i such that $P_{j} \neq \varnothing$ for all $j \geq i$. Then there exists a path in G that visits an even rank infinitely often.)
- Hence, $\alpha \in \mathcal{L}\left(\mathcal{A}^{\prime}\right)$.

