Automata, Games, and Verification: Lecture 4

Let *G* ' be a subgraph of *G*. We call a vertex $\langle s, l \rangle$

- *safe* in *G'* if for all vertices $\langle s', l' \rangle$ reachable from $\langle s, l \rangle$, $s' \notin F$, and
- *endangered* in *G*′ if only finitely many vertices are reachable.

We define an infinite sequence $G_0 \supseteq G_1 \supseteq G_2 \supseteq \dots$ of DAGs inductively as follows:

- $G_0 = G$
- $G_{2i+1} = G_{2i} \setminus \{ \langle s, l \rangle \mid \langle s, l \rangle \text{ is endangered in } G_{2i} \}$
- $G_{2i+2} = G_{2i+1} \setminus \{ \langle s, l \rangle \mid \langle s, l \rangle \text{ is safe in } G_{2i+1} \}.$

Example:

- no endangered vertices in *G*;
- safe in G_1 ;
- endangered in *G*₂;
- safe in *G*₃;
- all remaining vertices are endangered in G_4 .

Lemma 1 If A does not accept α , then the following holds: For every $i \ge 0$ there exists an l_i such that for all $j \ge l_i$ at most |S| - i vertices of the form $\langle -, j \rangle$ are in G_{2i} .

Proof:

Proof by induction on *i*:

- i = 0: In *G*, for every *l*, there are at most |S| vertices of the form $\langle -, l \rangle$.
- $i \rightarrow i + 1$:

- Case G_{2i} is finite: then $G_{2(i+1)}$ is empty.
- Case G_{2i} is infinite:
 - * There must exist a safe vertex (s, l) in G_{2i+1}. (Otherwise, we can construct a path in G with infinitely many visits to F).
 - * We choose $l_{i+1} = l$.
 - * We prove that for all $j \ge l$, there are at most |S| (i+1) vertices of the form $\langle -, j \rangle$ in G_{2i+2} .
 - Since $\langle s, l \rangle \in G_{2i+1}$, it is not endangered in G_{2i} .
 - Hence, there are infinitely many vertices reachable from $\langle s, l \rangle$ in G_{2i} .
 - By König's Lemma, there exists an infinite path $p = \langle s, l \rangle, \langle s_1, l+1 \rangle, \langle s, l+2 \rangle, \dots$ in G_{2i} .
 - No vertex on p is endangered (there is an infinite path). Therefore, p is in G_{2i+1} .
 - All vertices on p are safe ($\langle s, l \rangle$ is safe) in G_{2i+1} . Therefore, none of the vertices on p are in G_{2i+2} .
 - Hence, for all $j \ge l$, the number of vertices of the form $\langle -, l \rangle$ in G_{2i+2} is strictly smaller than their number in G_{2i} .

Lemma 2 If A does not accept α , then there exists an odd ranking for G.

Proof:

- We define $f(\langle s, l \rangle) = 2i$ if $\langle s, l \rangle$ is endangered in G_{2i} and
- $f(\langle s, l \rangle) = 2i + 1$ if $\langle s, l \rangle$ is safe in G_{2i+1} .
- *f* is a ranking:
 - by Lemma 1, G_j is empty for $j > 2 \cdot |S|$. Hence, $f : V \rightarrow \{0, \dots, 2 \cdot |S|\}$.
 - if $\langle s', l' \rangle$ is a successor of $\langle s, l \rangle$, then $f(\langle s', l' \rangle) \leq f(\langle s, l \rangle)$
 - * Let $j \coloneqq f(\langle s, l \rangle)$.
 - * Case *j* is even: vertex ⟨*s*, *l*⟩ is endangered in *G_j*; hence either ⟨*s'*, *l'*⟩ is not in *G_j*, and therefore *f*(⟨*s*, *l*⟩) < *j*; or ⟨*s'*, *l'*⟩ is in *G_j* and endangered; hence, *f*(⟨*s*, *l*⟩) = *j*.
 - * Case *j* is odd: vertex $\langle s, l \rangle$ is safe in G_j ; hence either $\langle s', l' \rangle$ is not in G_j , and therefore $f(\langle s, l \rangle) < j$; or $\langle s', l' \rangle$ is in G_j and safe; hence, $f(\langle s, l \rangle) = j$.
 - f is an odd ranking:
 - * For every path $\langle s_0, l_0 \rangle$, $\langle s_1, l_1 \rangle$, $\langle s_2, l_2 \rangle$, ... in *G* there exists an $i \ge 0$ such that for all $j \ge 0$, $f(\langle s_{i+j}, l_{i+j} \rangle) = f(\langle s_i, l_i \rangle)$.
 - * Suppose that $k := f(\langle s_i, l_i \rangle)$ is even. Thus, $\langle s_i, l_i \rangle$ is endangered in G_k .
 - * Since $f(\langle s_{i+j}, l_{i+j} \rangle) = k$ for all $j \ge 0$, all $\langle s_{i+j}, l_{i+j} \rangle$ are in G_k .
 - * This contradicts that $\langle s_i, l_i \rangle$ is endangered in G_k .

Theorem 1 For each Büchi automaton \mathcal{A} there exists a Büchi automaton \mathcal{A}' such that $\mathcal{L}(\mathcal{A}') = \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A})$.

Helpful definitions:

- A level ranking is a function $g : S \to \{0, \dots, 2 \cdot |S|\} \cup \{\bot\}$ such that if g(s) is odd, then $s \notin F$.
- Let \mathcal{R} be the set of all level rankings.
- A level ranking g' covers a level ranking g if, for all $s, s' \in S$, if $g(s) \neq \bot$ and $(s, \sigma, s') \in T$, then $\bot \neq g'(s') \leq g(s)$.

Proof:

We define $\mathcal{A}' = (S', I', T', F')$ with

- $S' = \mathcal{R} \times 2^S$;
- $I' = \{ \langle g_0, \varnothing \rangle \mid g_0 \in \mathcal{R}, g_0(s) = \bot \text{ iff } s \notin I \};$
- $T = \{(\langle g, \emptyset \rangle, \sigma, \langle g', P' \rangle) \mid g' \text{ covers } g, \text{ and } P' = \{s' \in S \mid g'(s') \text{ is even }\}\}$ $\cup \{(\langle g, P \rangle, \sigma, \langle g', P' \rangle) \mid P \neq \emptyset, g' \text{ covers } g, \text{ and}$ $P' = \{s' \in S \mid (s, \sigma, s') \in T, s \in P, g'(s') \text{ is even }\}\};$
- $F = \mathcal{R} \times \{\emptyset\}.$

(Intuition: A' guesses the level rankings for the run DAG. The *P* component tracks the states whose corresponding vertices in the run DAG have even ranks. Paths that traverse such vertices should eventually reach a vertex with odd rank. The acceptance condition ensures that all paths visit a vertex with odd rank infinitely often.)

 $\mathcal{L}(\mathcal{A}') \subseteq \Sigma^{\omega} \smallsetminus \mathcal{L}(\mathcal{A}):$

- Let $\alpha \in \mathcal{L}(\mathcal{A}')$ and let $r' = (g_0, P_0), (g_1, P_1), \ldots$ be an accepting run of \mathcal{A}' on α .
- Let G = (V, E) be the run DAG of A on α .
- The function $f : \langle s, l \rangle \mapsto g_l(s), s \in S_l, l \in \omega$ is a ranking for *G*:
 - if $g_i(s)$ is odd then $s \notin F$;
 - for all $(\langle s, l \rangle, \langle s', l+1 \rangle) \in E, g_{l+1}(s') \leq g_l(s)$.
- *f* is an odd ranking:
 - Assume otherwise. Then there exists a path $\langle s_0, l_0 \rangle$, $\langle s_1, l_1 \rangle$, $\langle s_2, l_2 \rangle$, ... in *G* such that for infinitely many $i \in \omega$, $f(\langle s_i, l_i \rangle)$ is even.
 - Hence, there exists an index $j \in \omega$, such that $f(\langle s_j, l_j \rangle)$ is even and, for all $k \ge 0$, $f(\langle s_{j+k}, l_{j+k} \rangle) = f(\langle s_j, l_j \rangle)$.
 - Since r' is accepting, $P_{j'} = \emptyset$ for infinitely many j'. Let j' be the smallest such index $\ge j$.
 - $P_{j'+1+k} \neq \emptyset$ for all $k \ge 0$.
 - Contradiction.

• Since there exists an odd ranking, $\alpha \notin \mathcal{L}(\mathcal{A})$.

$$\Sigma^{\omega} \smallsetminus \mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}')$$
:

- Let $\alpha \in \Sigma^{\omega} \setminus \mathcal{L}(\mathcal{A})$ and let G = (V, E) be the run DAG of \mathcal{A} on α .
- There exists an odd ranking f on G.

• There is a run
$$r' = (g_0, P_0), (g_1, P_1), \dots$$
 of \mathcal{A}' on α , where
 $g_l(s) = \begin{cases} f(\langle s, l \rangle) & \text{if } s \in S_l; \\ \bot & \text{otherwise;} \end{cases}$
 $P_0 = \emptyset,$
 $P_{l+1} = \begin{cases} \{s \in S \mid g_{l+1}(s) \text{ is even } \} & \text{if } P_l = \emptyset, \\ \{s' \in S \mid \exists s \in S_l \cap P_l . (\langle s, l \rangle, \langle s', l+1 \rangle) \in E, g_{l+1}(s') \text{ is even} \} & \text{otherwise.} \end{cases}$

• r' is accepting. (Assume there is an index *i* such that $P_j \neq \emptyset$ for all $j \ge i$. Then there exists a path in *G* that visits an even rank infinitely often.)

• Hence, $\alpha \in \mathcal{L}(\mathcal{A}')$.