Automata, Games, and Verification: Lecture 2

2 Büchi Automata

Definition 1 A nondeterministic Büchi automaton A over alphabet Σ is a tuple (S, I, T, F):

- *S* : *a finite set of* states
- $I \subseteq S$: *a subset of* initial states
- $T \subseteq S \times \Sigma \times S$: *a set of* transitions
- $F \subseteq S$: *a subset of* accepting states

Now we define how a Büchi automaton uses an infinite word as input. Notice that we do not refer to acceptance in this definition.

Definition 2 A run of a nondeterministic Büchi automaton A on an infinite input word $\alpha = \sigma_0 \sigma_1 \sigma_2 \dots$ is an infinite sequence of states s_0, s_1, s_2, \dots such that the following hold:

• $s_0 \in I$

• for all
$$i \in \omega$$
, $(s_i, \sigma_i, s_{i+1}) \in T$

Example:

In the automaton shown the set of states are $S = \{A, B, C, D\}$, the initial set of states are $I = \{A\}$ (indicated with pointing arrow with no source), the transitions $T = \{(A, a, B), (B, a, C), (C, b, D), (D, b, A)\}$ are the remaining arrows in the diagram, and the set of accepting states is $F = \{D\}$ (double-lined state circle).

On input *aabbaabb*... the Büchi automaton shown has only the run: *ABCDABCDABCD*...

Determinism is a property of machines that can only react in a unique way to their input. The following definition makes this clear for Büchi automata.

Definition 3 A Büchi automaton A is deterministic when T is a partial function (with respect to the next input letter and the current state):

 $\forall \sigma \in \Sigma, \forall s, s_0, s_1 \in S. (s, \sigma, s_0) \in T \text{ and } (s, \sigma, s_1) \in T \implies s_0 = s_1$ and I is singleton.

(By Büchi automaton we usually mean nondeterministic Büchi automaton.)

Definition 4 *The* infinity set of an infinite word $\alpha \in \Upsilon^{\omega}$ over some alphabet Υ is the set $In(\alpha) = \{v \in \Upsilon \mid \forall i \exists j . j \ge i \text{ and } \alpha(j) = v\}$

Definition 5 A Büchi automaton A accepts an infinite word α if:

- there is a run $r = s_0 s_1 s_2 \dots of \alpha$ on A
- *r* is accepting: $In(r) \cap F \neq \emptyset$

The language recognized by Büchi automaton \mathcal{A} *is defined as follows:* $\mathcal{L}(\mathcal{A}) = \{ \alpha \in \Sigma^{\omega} | \mathcal{A} \text{ accepts } \alpha \}$

Example: The automaton from the previous example has the language {*aabbaabbaabb*...}.

Comment: A deterministic Büchi automaton $\mathcal{A} = (S, I, T, F)$ defines a partial function¹ from Σ^{ω} to a set of runs $R \subseteq S^{\omega}$.

Definition 6 An ω -language L is Büchi recognizable if there is a Büchi automaton \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = L$.

Example: The singleton ω -language $L = \{\sigma\}$ with $\sigma = abaabaaaabaaaab...$ is not Büchi recognizable. (Note that all finite languages of finite words are NFA-recognizable. Analog result does not hold for Büchi-automata)

Proof:

- Suppose there is a Büchi automaton \mathcal{A} with $\mathcal{L}(\mathcal{A}) = L$.
- Let $r = s_0 s_1 \dots$ be an accepting run on σ .
- Since *F* is finite, there exists $k, k' \in \omega$ with k < k' and $s_k = s_{k'} \in F$.
- $r' = r_0 \dots r_{k'-1} (r_k \dots r_{k'-1})^{\omega}$ is an accepting run on $\sigma' = \sigma(0) \dots \sigma(k'-1) (\sigma(k) \dots \sigma(k'-1))^{\omega}.$
- Hence, $\sigma' \in \mathcal{L}(\mathcal{A})$. Contradiction.

Definition 7 *A Büchi automaton is* complete *if its transition relation contains a function:* $\forall s \in S, \sigma \in \Sigma . \exists s' \in S . (s, \sigma, s') \in T$

¹A *partial function* is a function that is not defined on all of the elements of its domain.

Theorem 1 For every Büchi automaton A, there is a complete Büchi automaton A' such that $\mathcal{L}(A) = \mathcal{L}(A')$.

Proof:

We define \mathcal{A}' in terms of the components *S*, *I*, *T*, *F* of \mathcal{A} :

$$S' = S \cup \{f\} \qquad f \text{ new}$$

$$I' = I$$

$$T' = T \cup \{(s, \sigma, f) \mid \nexists s' . (s, \sigma, s') \in T\} \cup \{(f, \sigma, f) \mid \sigma \in \Sigma\}$$

$$F' = F$$

The runs of \mathcal{A}' are a superset of those of \mathcal{A} since we have added states and transitions. Furthermore, on any infinite input word α the accepting runs of \mathcal{A} and \mathcal{A}' correspond, because any run that reaches f stays in f, and since $f \notin F'$, such a run is not accepting.

Example: Completing the automaton from the previous examples we obtain the following automaton:

Unless we specify otherwise, we will only consider complete automata when we prove results.

Comment: A complete deterministic Büchi automaton $\mathcal{A} = (S, I, T, F)$ may be viewed as a total function from Σ^{ω} to S^{ω} . A complete (possibly nondeterministic) Büchi automaton produces at least one run for every Σ^{ω} input word.

3 ω-regular Languages

Definition 8 The ω -regular expressions are defined as follows.

If R is an regular expression where ε ∉ L(R), then R^ω is an ω-regular expression. L(R^ω) = L(R)^ω where L^ω = {u₀u₁... | u_i ∈ L, |u_i| > 0 for all i ∈ ω} for L ⊆ Σ*.

- If R is a regular expression and U is an ω-regular expression, then R · U is an ω-regular expression. L(R · U) = L(R) · L(U) where L₁ · L₂ = {r · u | r ∈ L₁, u ∈ L₂} for L₁ ⊆ Σ*, L₂ ⊆ Σ^ω.
- If U₁ and U₂ are ω-regular expressions, then U₁ + U₂ is an ω-regular expression. L(U₁ + U₂) = L(U₁) ∪ L(U₂).

Definition 9 An ω -regular language is a finite union of ω -languages of the form $U \cdot V^{\omega}$ where $U, V \subseteq \Sigma^*$ are regular languages.

Theorem 2 If L_1 and L_2 are Büchi recognizable, then so is $L_1 \cup L_2$.

Proof:

Let A_1 and A_2 be Büchi automata that recognize L_1 and L_2 , respectively. We construct an automaton A' for $L_1 \cup L_2$:

- $S' = S_1 \cup S_2$ (w.l.o.g. we assume $S_1 \cap S_2 = \emptyset$);
- $I' = I_1 \cup I_2;$
- $T' = T_1 \cup T_2;$
- $F' = F_1 \cup F_2$.

 $\mathcal{L}(\mathcal{A}') \subseteq \mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$: For $\alpha \in \mathcal{L}(\mathcal{A}')$, we have an accepting run $r = s_0 s_1 s_2 \dots$ of α in \mathcal{A}' . If $s_0 \in S_1$, then r is an accepting run on \mathcal{A}_1 , otherwise $s_0 \in S_2$ and r is an accepting run on \mathcal{A}_2 .

 $\mathcal{L}(\mathcal{A}') \supseteq \mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$: For $i \in \{1, 2\}$ and $\alpha \in \mathcal{L}(\mathcal{A}_i)$, there is an accepting run $r = s_0 s_1 s_2 \dots$ on \mathcal{A}_i . The run r is accepting for α in \mathcal{A}' .

Theorem 3 If L_1 and L_2 are Büchi recognizable, then so is $L_1 \cap L_2$.

Proof:

We construct an automaton \mathcal{A}' from \mathcal{A}_1 and \mathcal{A}_2 :

- $S' = S_1 \times S_2 \times \{1, 2\}$
- $I' = I_1 \times I_2 \times \{1\}$
- $T' = \{((s_1, s_2, 1), \sigma, (s'_1, s'_2, 1)) \mid (s_1, \sigma, s'_1) \in T_1, (s_2, \sigma, s'_2) \in T_2, s_1 \notin F_1\}$ $\cup \{((s_1, s_2, 1), \sigma, (s'_1, s'_2, 2)) \mid (s_1, \sigma, s'_1) \in T_1, (s_2, \sigma, s'_2) \in T_2, s_1 \in F_1\}$ $\cup \{((s_1, s_2, 2), \sigma, (s'_1, s'_2, 2)) \mid (s_1, \sigma, s'_1) \in T_1, (s_2, \sigma, s'_2) \in T_2, s_2 \notin F_2\}$ $\cup \{((s_1, s_2, 2), \sigma, (s'_1, s'_2, 1)) \mid (s_1, \sigma, s'_1) \in T_1, (s_2, \sigma, s'_2) \in T_2, s_2 \notin F_2\}$

•
$$F' = \{(s_1, s_2, 2) \mid s_1 \in S_1, s_2 \in F_2\}$$

 $\mathcal{L}(\mathcal{A}') = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2)$:

• $r' = (s_1^0, s_2^0, t^0)(s_1^1, s_2^1, t^1) \dots$ is a run of \mathcal{A}' on input word σ iff $r_1 = s_1^0 s_1^1 \dots$ is a run of \mathcal{A}_1 on σ and $r_2 = s_2^0 s_2^1 \dots$ is a run of \mathcal{A}_2 on σ .

• r' is accepting iff r_1 is accepting and r_2 is accepting.

Theorem 4 If L_1 is a regular language and L_2 is Büchi recognizable, then $L_1 \cdot L_2$ is Büchi-recognizable.

Proof:

Let A_1 be a finite-word automaton that recognizes L_1 and A_2 be a Büchi automaton that recognizes L_2 . We construct:

• $S' = S_1 \cup S_2$ (w.l.o.g. we assume $S_1 \cap S_2 = \emptyset$);

•
$$I' = \begin{cases} I_1 & \text{if } I_1 \cap F_1 = \emptyset \\ I_1 \cup I_2 & \text{otherwise;} \end{cases}$$

•
$$T' = T_1 \cup T_2 \cup \{(s, \sigma, s') \mid (s, \sigma, f) \in T_1, f \in F_1, s' \in I_2\};$$

•
$$F' = F_2.$$

Theorem 5 If *L* is a regular language then L^{ω} is Büchi recognizable.

Proof:

Let \mathcal{A} be a finite word automaton; let w.l.o.g. $\varepsilon \notin \mathcal{L}(\mathcal{A})$.

• Step 1: Ensure that all initial states have no incoming transitions. We modify A as follows:

-
$$S' = S \cup \{s_{new}\};$$

- $I' = \{s_{new}\};$
- $T' = T \cup \{(s_{new}, \sigma, s') \mid (s, \sigma, s') \in T \text{ for some } s \in I\};$
- $F' = F.$

This modification does not affect the language of A.

• Step 2: Add loop:

-
$$S'' = S'; I'' = I';$$

- $T'' = T' \cup \{(s, \sigma, s_{new} | (s, \sigma, s') \in T' \text{ and } s' \in F'\};$
- $F'' = I'.$

 $\mathcal{L}(\mathcal{A}'') \subseteq \mathcal{L}(\mathcal{A}')^{\omega}$:

- Assume $\alpha \in \mathcal{L}(\mathcal{A}'')$ and $s_0 s_1 s_2 \dots$ is an accepting run for α in \mathcal{A}'' .
- Hence, $s_i = s_{\text{new}} \in F'' = I'$ for infinitely many indices $i: i_0, i_1, i_2, \dots$
- This provides a series of runs in \mathcal{A}' :
 - run $s_0 s_1 \dots s_{i_1-1} s$ on $w_1 = \alpha(0)\alpha(1) \dots \alpha(i_1-1)$ for some $s \in F'$;
 - run $s_{i_1}s_{i_1+1} \dots s_{i_2-1}s$ on $w_2 = \alpha(i_1)\alpha(i_1+1) \dots \alpha(i_2-1)$ for some $s \in F'$;

- ...

- This yields $w_k \in \mathcal{L}(\mathcal{A}')$ for every $k \ge 1$.
- Hence, $\alpha \in \mathcal{L}(\mathcal{A}')^{\omega}$.

 $\mathcal{L}(\mathcal{A}'') \supseteq \mathcal{L}(\mathcal{A}')^{\omega}$:

- Let $\alpha = w_1 w_2 w_3 \in \Sigma^{\omega}$ such that $w_k \in \mathcal{L}(\mathcal{A}')$ for all $k \ge 1$.
- For each k, we choose an accepting run $s_0^k s_1^k s_2^k \dots s_{n_k}^k$ of \mathcal{A}' on w_k .
- Hence, $s_0^k \in I'$ and $s_{n_k}^k \in F'$ for all $k \ge 1$.
- Thus,

$$s_0^1 \dots s_{n_1-1}^1 s_0^2 \dots s_{n_2-1}^2 s_0^3 \dots s_{n_3-1}^3 \dots$$

is an accepting run on α in \mathcal{A}'' .

• Hence, $\alpha \in \mathcal{L}(\mathcal{A}'')$.

Theorem 6 (Büchi's Characterization Theorem (1962)) An ω -language is Büchi recognizable *iff it is \omega-regular.*