Automata, Games, and Verification: Lecture 14

Corollary 1 S₂S *is decidable.*

SnS is the monadic second order theory of *n* successors.

Corollary 2 SnS is decidable.

Proof:

Repeat exercise for automata on *n*-ary trees.

S ω S is the monadic second order theory of ω successors.

Theorem 1 $S\omega S$ is decidable.

Proof:

We give an effective translation from $S\omega S$ to S_2S .

• Bijection β from ω^* to $0\mathbb{B}^*$:

$$-\beta(\varepsilon) \coloneqq \varepsilon$$

$$-\beta(\nu n) \coloneqq \beta(\nu) 01^n$$

- One-to-many relation *R* between S ω S and S₂S structures: label a position $\beta(x)$ in the binary tree with σ iff *x* is labeled with σ in the ω -ary tree.
- Bring given $S\omega S$ formula in normal form and translate as follows:

$$-x = \varepsilon \mapsto x = \varepsilon$$

- $x = yn \mapsto x = y01^n$ for $n \in \omega$
- $x \in Y \mapsto x \in Y$
- $-x = y \mapsto x \in Y$
- $\exists X \dots \mapsto \exists X . (\forall y \in X . \neg 1 \le y) \land \dots$

19 Alternating Tree Automata

Definition 1 An alternating tree automaton over binary Σ -trees is a tuple $\mathcal{A} = (S, s_0, \delta, \varphi)$:

- S: finite set of states
- $s_0 \in S$
- $\delta: S \times \Sigma \to \mathbb{B}^+(\{0,1\} \times S)$ is the transition function.
- φ : acceptance condition (Büchi, parity, ...)

More general: set of directions $\mathcal{D} = \{0, \dots, k-1\}, T \subseteq \mathcal{D}^*, \text{ degree } d : \mathcal{D}^* \to \{1, \dots, k\}$

Definition 2 An alternating tree automaton over Σ -trees is a tuple $\mathcal{A} = (S, s_0, \delta, \varphi)$:

- S: finite set of states
- $s_0 \in S$
- $\delta: S \times \Sigma \times \{1, \dots, k\} \to \mathbb{B}^+(\{0, 1, \dots, k-1\} \times S)$ is the transition function.
- *φ*: *acceptance condition* (*Büchi, parity, ...*)

Definition 3 A run of a tree automaton A on a Σ -tree v is a $\mathcal{D}^* \times S$ -tree (T, r), s.t.

- 1. $r(\varepsilon) = (\varepsilon, s_0)$
- 2. Let $y \in T$ with r(y) = (x, q) and $\delta(q, v(x), d(x)) = \theta$. Then there is a (possibly empty) set $Q = \{(c_0, q'_0), (c_1, q'_1), \dots, (c_n, q'_n)\} \subseteq \{0, \dots, d(x) 1\} \times S$, such that the following hold:
 - $Q \vDash \theta$
 - for all $0 \le i \le n$, we have $y \cdot i \in T$ and $r(y \cdot i) = (x \cdot c_i, q'_i)$.

Definition 4 A run is accepting if every branch is accepting (by φ). A Σ -tree is accepted if there exists an accepting run.

Tree automata on Transition Systems

Example: For a transition system:

we build a computation tree *t*

Let *k* be the max number of successors in the transition system (*AP*, *S*, *s*₀, \rightarrow , *L*). Define a mapping: $f : \{0, ..., k-1\}^* \rightarrow S$:

- $f(\varepsilon) = s_o$
- Assume there is, for each s ∈ S, a fixed order on the successors s'₁, s'₂,... of s f(w · i) = s'_i where s'_i is the *i*th successor of s = f(w).

Definition 5 The computation tree of a transition system (AP, S, s_0 , \rightarrow , L) is a 2^{AP}-tree (T, t) with t(v) = L(f(v)) and d(v) = d(f(v)) for all $v \in T$.

Theorem 2 The computation tree of a transition system is accepted by an alternating tree automaton $\mathcal{A} = (S_{\mathcal{A}}, s_0, \delta, \varphi)$ iff Player o has a winning strategy from (s_0, q_0) in the following game:

- $V_0 = S_A \times S_M$
- $V_1 = S_{\mathcal{A}} \times 2^{\{0,\dots,k-1\} \times S_{\mathcal{A}}} \times S_{\mathcal{M}}$
- $E = \{((s,q), (s,\eta,q)) \mid \eta \models \delta(s, L(q), d(q))\}$ $\cup \{((s,\eta,q), (s',q')) \mid (i,q') \in \eta, s' \text{ is the ith successor of } s\}$
- winning condition: φ applied to the first component

CTL

Translation from CTL formula φ to alternating Büchi tree automaton \mathcal{A}_{φ} :

- $S = closure(\varphi) := set of all subformulas and their negations$
- for $p \in AP$:
 - $\delta(p, \sigma, k) = true$ if $p \in \sigma$

- $\delta(p, \sigma, k) = false \text{ if } p \notin \sigma$ - $\delta(\neg p, \sigma, k) = false \text{ if } p \in \sigma$ - $\delta(\neg p, \sigma, k) = true \text{ if } p \notin \sigma$
- $\delta(\varphi \land \psi, \sigma, k) = \delta(\varphi, \sigma, k) \land \delta(\psi, \sigma, k)$
- $\delta(\varphi \lor \psi, \sigma, k) = \delta(\varphi, \sigma, k) \lor \delta(\psi, \sigma, k)$
- $\delta(AX\varphi, \sigma, k) = \bigwedge_{c=0}^{k-1} (c, \varphi)$
- $\delta(\mathrm{EX}\varphi,\sigma,k) = \bigvee_{c=0}^{k-1}(c,\varphi)$
- $\delta(A\varphi \mathcal{U} \psi, \sigma, k) = \delta(\psi, \sigma, k) \vee (\delta(\varphi, \sigma, k) \wedge \bigwedge_{c=0}^{k-1} (c, A\varphi \mathcal{U} \psi))$
- $\delta(\mathrm{E}\varphi \,\mathcal{U}\,\psi,\sigma,k) = \delta(\psi,\sigma,k) \vee (\delta(\varphi,\sigma,k) \wedge \bigvee_{c=0}^{k-1} (c,\mathrm{E}\varphi \,\mathcal{U}\,\psi))$
- $\delta(\neg \varphi, \sigma, k) = \overline{\delta(\varphi, \sigma, k)}$

Theorem 3 For every CTL formula φ and a set of directions \mathcal{D} there is an alternating Büchi tree automaton \mathcal{A}_{φ} such that $\mathcal{L}(\mathcal{A}_{\mathcal{D},\varphi})$ is exactly the set of \mathcal{D} -branching trees that satisfy φ .