Automata, Games, and Verification: Lecture 14

Corollary $1 S_{2} S$ is decidable.
$\mathrm{S} n \mathrm{~S}$ is the monadic second order theory of n successors.
Corollary 2 SnS is decidable.

Proof:

Repeat exercise for automata on n-ary trees.
$S \omega S$ is the monadic second order theory of ω successors.
Theorem $1 S \omega S$ is decidable.

Proof:

We give an effective translation from $\mathrm{S} \omega \mathrm{S}$ to $\mathrm{S}_{2} \mathrm{~S}$.

- Bijection β from ω^{*} to $0 \mathbb{B}^{*}$:
$-\beta(\varepsilon):=\varepsilon$
- $\beta(v n):=\beta(v) 01^{n}$
- One-to-many relation R between $\mathrm{S} \omega \mathrm{S}$ and $\mathrm{S}_{2} \mathrm{~S}$ structures: label a position $\beta(x)$ in the binary tree with σ iff x is labeled with σ in the ω-ary tree.
- Bring given $\mathrm{S} \omega \mathrm{S}$ formula in normal form and translate as follows:
- $x=\varepsilon \mapsto x=\varepsilon$
- $x=y n \mapsto x=y 01^{n}$ for $n \in \omega$
- $x \in Y \mapsto x \in Y$
$-x=y \mapsto x \in Y$
$-\exists X \ldots \mapsto \exists X .(\forall y \in X . \neg 1 \leq y) \wedge \ldots$

19 Alternating Tree Automata

Definition 1 An alternating tree automaton over binary Σ-trees is a tuple $\mathcal{A}=\left(S, s_{0}, \delta, \varphi\right)$:

- S: finite set of states
- $s_{0} \in S$
- $\delta: S \times \Sigma \rightarrow \mathbb{B}^{+}(\{0,1\} \times S)$ is the transition function.
- φ : acceptance condition (Büchi, parity, ...)

More general: set of directions $\mathcal{D}=\{0, \ldots, k-1\}, T \subseteq \mathcal{D}^{*}$, degree $d: \mathcal{D}^{*} \rightarrow\{1, \ldots, k\}$
Definition 2 An alternating tree automaton over Σ-trees is a tuple $\mathcal{A}=\left(S, s_{0}, \delta, \varphi\right)$:

- S: finite set of states
- $s_{0} \in S$
- $\delta: S \times \Sigma \times\{1, \ldots k\} \rightarrow \mathbb{B}^{+}(\{0,1, \ldots k-1\} \times S)$ is the transition function.
- φ : acceptance condition (Büchi, parity, ...)

Definition 3 A run of a tree automaton \mathcal{A} on a Σ-tree v is a $\mathcal{D}^{*} \times S$-tree (T, r), s.t.

1. $r(\varepsilon)=\left(\varepsilon, s_{0}\right)$
2. Let $y \in T$ with $r(y)=(x, q)$ and $\delta(q, v(x), d(x))=\theta$. Then there is a (possibly empty) set $Q=\left\{\left(c_{0}, q_{0}^{\prime}\right),\left(c_{1}, q_{1}^{\prime}\right), \ldots,\left(c_{n}, q_{n}^{\prime}\right)\right\} \subseteq\{0, \ldots, d(x)-1\} \times S$, such that the following hold:

- $Q \vDash \theta$
- for all $0 \leq i \leq n$, we have $y \cdot i \in T$ and $r(y \cdot i)=\left(x \cdot c_{i}, q_{i}^{\prime}\right)$.

Definition 4 A run is accepting if every branch is accepting (by φ). A Σ-tree is accepted if there exists an accepting run.

Tree automata on Transition Systems

Example: For a transition system:

we build a computation tree t

Let k be the max number of successors in the transition system $\left(A P, S, s_{0}, \rightarrow, L\right)$. Define a mapping: $f:\{0, \ldots, k-1\}^{*} \rightarrow S$:

- $f(\varepsilon)=s_{o}$
- Assume there is, for each $s \in S$, a fixed order on the successors $s_{1}^{\prime}, s_{2}^{\prime}, \ldots$ of s $f(w \cdot i)=s_{i}^{\prime}$ where s_{i}^{\prime} is the i th successor of $s=f(w)$.

Definition 5 The computation tree of a transition system $\left(A P, S, s_{0}, \rightarrow, L\right)$ is a $2^{A P}$-tree (T, t) with $t(v)=L(f(v))$ and $d(v)=d(f(v))$ for all $v \in T$.

Theorem 2 The computation tree of a transition system is accepted by an alternating tree automaton $\mathcal{A}=\left(S_{\mathcal{A}}, s_{0}, \delta, \varphi\right)$ iff Player o has a winning strategy from $\left(s_{0}, q_{0}\right)$ in the following game:

- $V_{0}=S_{\mathcal{A}} \times S_{\mathcal{M}}$
- $V_{1}=S_{\mathcal{A}} \times 2^{\{0 \ldots, \ldots-1\} \times S_{\mathcal{A}}} \times S_{\mathcal{M}}$
- $E=\{((s, q),(s, \eta, q)) \mid \eta \vDash \delta(s, L(q), d(q))\}$ $\cup\left\{\left((s, \eta, q),\left(s^{\prime}, q^{\prime}\right)\right) \mid\left(i, q^{\prime}\right) \in \eta, s^{\prime}\right.$ is the ith successor of $\left.s\right\}$
- winning condition: φ applied to the first component

CTL

Translation from CTL formula φ to alternating Büchi tree automaton \mathcal{A}_{φ} :

- $S=$ closure (φ) := set of all subformulas and their negations
- for $p \in A P$:
- $\delta(p, \sigma, k)=$ true if $p \in \sigma$
- $\delta(p, \sigma, k)=$ false if $p \notin \sigma$
- $\delta(\neg p, \sigma, k)=$ false if $p \in \sigma$
- $\delta(\neg p, \sigma, k)=$ true if $p \notin \sigma$
- $\delta(\varphi \wedge \psi, \sigma, k)=\delta(\varphi, \sigma, k) \wedge \delta(\psi, \sigma, k)$
- $\delta(\varphi \vee \psi, \sigma, k)=\delta(\varphi, \sigma, k) \vee \delta(\psi, \sigma, k)$
- $\delta(\mathrm{AX} \varphi, \sigma, k)=\bigwedge_{c=0}^{k-1}(c, \varphi)$
- $\delta(\operatorname{EX} \varphi, \sigma, k)=\bigvee_{c=0}^{k-1}(c, \varphi)$
- $\delta(\mathrm{A} \varphi \mathcal{U} \psi, \sigma, k)=\delta(\psi, \sigma, k) \vee\left(\delta(\varphi, \sigma, k) \wedge \bigwedge_{c=0}^{k-1}(c, \mathrm{~A} \varphi \mathcal{U} \psi)\right.$
- $\delta(\mathrm{E} \varphi \mathcal{U} \psi, \sigma, k)=\delta(\psi, \sigma, k) \vee\left(\delta(\varphi, \sigma, k) \wedge \bigvee_{c=0}^{k-1}(c, \mathrm{E} \varphi \mathcal{U} \psi)\right.$
- $\delta(\neg \varphi, \sigma, k)=\overline{\delta(\varphi, \sigma, k)}$

Theorem 3 For every CTL formula φ and a set of directions \mathcal{D} there is an alternating Büchi tree automaton \mathcal{A}_{φ} such that $\mathcal{L}\left(\mathcal{A}_{\mathcal{D}, \varphi}\right)$ is exactly the set of \mathcal{D}-branching trees that satisfy φ.

