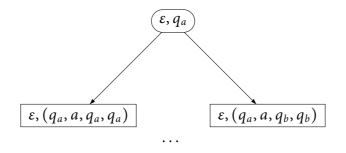
Automata, Games, and Verification: Lecture 12

Theorem 1 A parity tree automaton $\mathcal{A} = (S, s_0, M, c)$ accepts an input tree t iff Player o wins the parity game $\mathcal{G}_{\mathcal{A},t} = (V_0, V_1, E, c')$ from position (ε, s_0) .

- $V_0 = \{(w,q) \mid w \in \{0,1\}^*, q \in S\};$
- $V_1 = \{(w, \tau) \mid w \in \{0, 1\}^*, \tau \in M\};$
- $E = \{((w,q), (w,\tau)) \mid \tau = (q, t(w), q'_0, q'_1), \tau \in M\}$ $\cup \{((w,\tau), (w',q')) \mid \tau = (q, \sigma, q'_0, q'_1) \text{ and}$ $((w' = w0 \text{ and } q' = q'_0) \text{ or } (w' = w1 \text{ and } q' = q'_1))\};$
- c'(w,q) = c(q) if $q \in S$;

•
$$c'(w, \tau) = 0$$
 if $\tau \in M$.

Example:



Proof:

• Given an accepting run *r* construct a winning strategy f_0 :

$$f_0(w,q) = (w, (r(w), t(w), r(w0), r(w1))$$

• Given a memoryless winning strategy f_0 construct an accepting run $r(\varepsilon) = s_0 \ \forall w \in \{0,1\}^*$

-
$$r(w0) = q$$
 where $f_0(w, r(w)) = (w, (_, _, q, _))$
- $r(w1) = q$ where $f_0(w, r(w)) = (w, (_, _, _, q))$

Lemma 1 For each parity tree automaton \mathcal{A} over Σ -trees there exists a parity tree automaton \mathcal{A}' over $\{1\}$ -trees, such that $\mathcal{L}(\mathcal{A}) = \emptyset$ iff $\mathcal{L}(\mathcal{A}') = \emptyset$.

Proof:

S' = S;
s'₀ = s₀;
M' = {(q,1,q₀.q₁) | (q,σ,q₀,q₁) ∈ M, σ ∈ Σ}
c' = c

Theorem 2 The language of a parity tree automaton $\mathcal{A} = (S, s_0, M, c)$ is non-empty iff Player o wins the parity game $\mathcal{G}_{\mathcal{A},t} = (V_0, V_1, E, c')$ from position s_0 .

- $V_0 = S;$
- $V_1 = M;$
- $E = \{(q, \tau) \mid \tau = (q, 1, q'_0, q'_1), \tau \in M\}$ $\cup \{(\tau, q') \mid \tau = (q, 1, q'_0, q'_1) \text{ and }$ $(q' = q'_0 \text{ or } q' = q'_1)\};$
- c'(q) = c(q) for $q \in S$;
- $c(\tau) = 0$ for $\tau \in M$.

Theorem 3 Büchi tree automata are strictly weaker than parity tree automata.

Proof:

- Consider the tree language $T = \{t \in T_{\{a,b\}} \mid \text{every branch of } t \text{ has only finitely many } b\}$
- *T* is recognized by a parity tree automaton. For example by $\mathcal{A} = (S, s_0, M, c)$ with $S = \{q_a, q_b\}; s_0 = q_a; M = \{(q_a, a, q_a, q_a), (q_b, a, q_a, q_a), (q_a, b, q_b, q_b), (q_b, b, q_b, q_b)\}; c(q_a) = 0, c(q_b) = 1.$
- *T* is not recognized by any Büchi tree automaton. Assume, by way of contradiction, that there is a Büchi tree automaton $\mathcal{A} = (S, s_0, M, F)$ such that $\mathcal{L}(\mathcal{A}) = T$.
 - Let n = |S|.
 - Consider the input tree t_n , where b appears exactly at nodes $1^+0, 1^+01^+0, \ldots, (1^+0)^n$.
 - $t_n \in T \Rightarrow$ there exists an accepting run *r* of \mathcal{A} on t_n .
 - On the branch consisting of the finite prefixes of 1^{ω} there are infinitely many visits to $F \Rightarrow \exists m_0 \in \omega$ such that $r(1^{m_0}) \in F$.
 - Analogously, on the branch consisting of the finite prefixes of $1^{m_0}01^{\omega}$, there are infinitely many visits to $F \Rightarrow \exists m_1 \in \omega$ such that $r(1^{m_0}01^{m_1}) \in F$.
 - Repeating this argument, we obtain n+1 positions $1^{m_0}, 1^{m_0}01^{m_1}, \ldots, 1^{m_0}01^{m_1}0\ldots 01^{m_n}$ where *F* is visited.

- There must exist two different nodes u, v on the path to $1^{m_0}01^{m_1}0...01^{m_n}$ such that u is a prefix of v and $r(u) = r(v) \in F$. The path from u to v contains a left turn and therefore contains a node labeled with b.
- We construct a new input tree t_n and a run tree r' by repeating the path from u to v infinitely often:
 - * let $v = u \cdot \pi$.
 - * $t'_n(x) = t_n(u \cdot y)$ if $x = u \cdot \pi^* \cdot y$ for some shortest $y \in \{0, 1\}^*$ $t'_n(x) = t_n(x)$ otherwise
 - * $r'(x) = r(u \cdot y)$ if $x = u \cdot \pi^* \cdot y$ for some shortest $y \in \{0, 1\}^*$ r'(x) = r(x) otherwise
 - * r' is accepting: the branch consisting of the finite prefixes of $u \cdot \pi^{\omega}$ has infinitely many visits to F; all other branches have the same labeling as in r after some finite prefix. Since r is accepting, these branches thus must also visit F infinitely often.
 - * Hence t'_n is accepted by \mathcal{A} , but $t'_n \notin T$, because the branch consisting of the finite prefixes of $u \cdot \pi^{\omega}$ has infinitely many *bs*. Contradiction.

17 Complementation of Parity Tree Automata

Reference: W. Thomas: *Languages, Automata and Logic,* Handbook of formal languages, Volume 3.

Theorem 4 For each parity tree automaton \mathcal{A} over Σ there is a parity tree automaton \mathcal{A}' with $\mathcal{L}(\mathcal{A}') = T_{\Sigma} - \mathcal{L}(\mathcal{A}).$

Proof:

- \mathcal{A} does *not* accept some tree *t* iff Player 1 has a winning memoryless strategy *f* in $\mathcal{G}_{\mathcal{A},t}$ from (ε, s_0)
- Strategy

$$f: \{0,1\}^* \times M \to \{0,1\}^* \times S$$

can be represented as

$$f': \{0,1\}^* \times M \to \{0,1\}$$

(where $f(u, (q, \sigma, q'_0, q'_1)) = (u \cdot i, q'_i)$ iff $f'(u, \tau) = i$).

• *f*′ is isomorphic to

$$g: \{0,1\}^* \to (M \to \{0,1\})$$

 $(M \rightarrow \{0,1\}$ is the finite "local strategy")

• Hence, A does not accept t iff

(1) there is a $(M \to \{0,1\})$ -tree v such that (2) for all $i_0, i_1, i_2, \ldots \in \{0,1\}^{\omega}$ (3) for all $\tau_0, \tau_1, \ldots \in M^{\omega}$ (4) if - for all j, $\tau_j = (q, a, q'_0, q'_1)$ $\Rightarrow a = t(i_0, i_1, \ldots, i_j)$ and $- i_0 i_1 \ldots = v(\varepsilon)(\tau_0)v(i_0)(\tau_1) \ldots$ ithen the generated state sequence $q_0q_1 \ldots$ with $q_0 = s_0, (q_j, a, q^0, q^1) = \tau_j,$ $q_{j+1} = q^{v(i_0, \ldots, i_{j-1})(\tau_j)}$ for all j

violates *c*.

• to be continued.