Automata, Games, and Verification: Lecture 10

12 Games

Definition 1 A game arena *is a triple* $A = (V_0, V_1, E)$, where

- V_0 and V_1 are disjoint sets of positions, called the positions of player 0 and 1,
- $E \subseteq V \times V$ for set $V = V_0 \uplus V_1$ of game positions,
- every position $p \in V$ has at least one outgoing edge $(p, p') \in E$.

Definition 2 A play is an infinite sequence $\pi = p_0 p_1 p_2 \dots \in V^{\omega}$ such that $\forall i \in \omega \ (p_i, p_{i+1}) \in E$.

Definition 3 A strategy for player σ is a function $f_{\sigma} : V^* \cdot V_{\sigma} \to V$ s.t. $(p, p') \in E$ whenever $f(u \cdot p) = p'$.

Definition 4 A play $\pi = p_0, p_1, \ldots$ conforms to strategy f_σ of player σ if $\forall i \in \omega$. if $p_i \in V_\sigma$ then $p_{i+1} = f_\sigma(p_0, \ldots, p_i)$.

Definition 5

- A reachability game $\mathcal{G} = (\mathcal{A}, R)$ consists of a game arena and a winning set of positions $R \subseteq V$. Player o wins a play $\pi = p_0 p_1 \dots$ if $p_i \in R$ for some $i \in \omega$, otherwise Player 1 wins.
- A Büchi game $\mathcal{G} = (\mathcal{A}, F)$ consists of an arena \mathcal{A} and a set $F \subseteq V$. Player o wins a play π if $In(\pi) \cap F \neq \emptyset$, otherwise Player 1 wins.
- A Parity game $\mathcal{G} = (\mathcal{A}, c)$ consists of an arena \mathcal{A} and a coloring function $c : V \to \mathbb{N}$. Player o wins play π if max $\{c(q) \mid q \in In(\pi)\}$ is even, otherwise Player 1 wins.

• ...

Definition 6

- A strategy f_{σ} is p-winning for player σ and position p if all plays that conform to f_{σ} and that start in p are won by Player σ .
- The winning region for player σ is the set of positions

 $W_{\sigma} = \{ p \in V \mid \text{there is a strategy } f_{\sigma} \text{ s.t. } f_{\sigma} \text{ is } p\text{-winning} \}.$

Definition 7 A game is determined if $V = W_0 \cup W_1$.

Definition 8

- A memoryless strategy for player σ is a function $f_{\sigma} : V_{\sigma} \to V$ which defines a strategy $f'_{\sigma}(u \cdot v) = f_{\sigma}(v)$.
- A game is memoryless determined if for every position some player wins the game with memoryless strategy.

13 Solving Reachability Games

Attractor Construction:

$$Attr_{\sigma}^{0}(X) = \emptyset;$$

$$Attr_{\sigma}^{i+1}(X) = Attr_{\sigma}^{i}(X)$$

$$\cup \{p \in V_{\sigma} \mid \exists p' . (p, p') \in E \land p' \in Attr_{\sigma}^{i}(X) \cup X\}$$

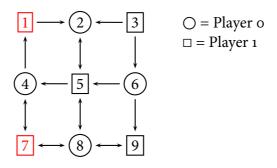
$$\cup \{p \in V_{1-\sigma} \mid \forall p' . (p, p') \in E \Rightarrow p' \in Attr_{\sigma}^{i}(X) \cup X\};$$

$$Attr_{\sigma}^{+}(X) = \bigcup_{i \in \omega} Attr_{\sigma}^{i}(X).$$

 $Attr_{\sigma}(X) = Attr_{\sigma}^{+}(X) \cup X$

The attractor construction solves the reachability game: $W_0 = Attr_0(R), W_1 = V \setminus W_0.$

Example: Consider the following reachability game with $R = \{1, 7\}$:



 $Attr_{0}^{0}(\{1,7\}) = \emptyset;$ $Attr_{0}^{1}(\{1,7\}) = \{4,8\};$ $Attr_{0}^{2}(\{1,7\}) = \{4,8,7,9\};$ $Attr_{0}^{3}(\{1,7\}) = \{4,6,7,8,9\};$ $Attr_{0}^{4}(\{1,7\}) = \{4,6,7,8,9\};$ $Attr_{0}^{4}(\{1,7\}) = \{4,6,7,8,9\};$ $Attr_{0}(\{1,7\}) = \{1,4,6,7,8,9\}.$

Theorem 1 Reachability games are memoryless determined.

Proof:

Let $p \in V$.

- 1. If $p \in Attr_0(R)$, then $p \in W_0$, with memoryless strategy f_0 :
 - Fix an arbitrary total ordering on V.
 - for $p \in V_0$ we define $f_0(q)$:

- if $p \in Attr_0^i(R)$ for some smallest i > 0, choose the minimal $p' \in Attr_0^{i-1}(R) \cup R$ such that $(p, p') \in E$;
- otherwise, choose the minimal $p' \in V$ such that $(p, p') \in E$.
- Hence, if $p \in Attr_0^i(R)$ for some *i*, then any play that conforms to f_0 reaches *R* in at most *i* steps.
- 2. If $p \notin Attr_0(R)$, then $p \in W_1$ with memoryless strategy f_1 :
 - for $p \in V_1$ we define $f_1(q)$:
 - if $p \in V_1 \setminus Attr_0(R)$, pick minimal $p' \in V \setminus Attr_0(R)$ such that $(p, p') \in E$. Such a p' must exist, since otherwise $p \in Attr_0(R)$.

- otherwise, pick minimal $p' \in V$ such that $(p, p') \in E$.
- Hence, if $p \in V \setminus Attr_0(R)$, then any play that conforms to f_1 never visits $Attr_0(R)$ and hence never R.

14 Solving Büchi Games

Recurrence Construction:

 $Recur_{\sigma}^{0} = F;$ $Recur_{\sigma}^{i+1} = F \cap Attr_{\sigma}^{+}(Recur_{\sigma}^{i});$ $Recur_{\sigma} = \bigcap_{i \in \omega} Recur_{\sigma}^{i}.$

The recurrence construction solves the Büchi game: $W_0 = Attr_0(Recur_0), W_1 = V \setminus W_0.$

Example: Same example as before, now as Büchi game with $F = \{1, 7\}$:

 $\begin{aligned} & Recur_0^0(\mathcal{G}) = \{1,7\} & W_0 = \{4,6,7,8,9\} \\ & Attr_0^+(\{1,7\},\mathcal{G}) = \{4,6,7,8,9\} & W_1 = \{1,2,3,5\} \\ & Recur_0^1(\mathcal{G}) = \{7\} \\ & Attr_0^+(\{7\},\mathcal{G}) = \{4,6,7,8,9\} \\ & Recur_0(\mathcal{G}) = \{7\} \\ & Attr_0(\{7\},\mathcal{G}) = \{4,6,7,8,9\} \end{aligned}$

Theorem 2 Büchi games are memoryless determined.

Proof:

- If $p \in Attr_0(Recur_0)$, then $p \in W_0$, with memoryless strategy f_0 :
 - Fix an arbitrary total ordering on V.
 - for $p \in V_0$ we define $f_0(q)$:
 - * if $p \in Attr_0(Recur_0)$, choose
 - the minimal $p' \in Recur_0$, if $(p, p') \in E$ exists,
 - the minimal $p' \in Attr_0^i(Recur_0)$ for minimal *i* such that $(p, p') \in E$ exists, otherwise.

- * if $p \notin Attr_0(Recur_0)$, choose minimal $p' \in V$ with $(p, p') \in E$.
- If $p \notin Attr_0(Recur_0)$, then $p \in W_1$ with memoryless strategy f_1 : we define memoryless strategies f_1^i such that if a play starts in $p \in V \setminus Attr_0^+(Recur_0^i)$ and conforms to f_1^i , then there are at most *i* further visits to *F* (not counting a possible visit in the first position).
 - for i = 0:

 $f_1^0(p)$: choose minimal $p' \in V$ such that $(p, p') \in E$ and $p' \in V \setminus Attr_0(F)$.

- for i > 0:
 - * if $p \in V \smallsetminus Attr_0^+(Recur_0^{i-1}), f_1^i(p) = f_1^{i-1}(p);$
 - * if $p \in Attr_0^+(Recur_0^{i-1}) \setminus Attr_0^+(Recur_0^i)$, then for $f_1^i(p)$ choose minimal p' such that $(p, p') \in E$ and $p' \in Attr_0^+(Recur_0^{i-1}) \setminus Attr_0^+(Recur_0^i)$.

Proof by induction on *i*:

- i = 0: Player 1 can avoid $Attr_0(F)$ and hence F;
- *i* + 1:
 - * case 1: play never reaches *F*;
 - * case 2: play reaches $p' \in F \setminus Recur_0^{i+1} = F \setminus Attr_0^+(Recur_0^i) \subseteq V \setminus Attr_0^+(Recur_0^i)$; by induction hypothesis, at most *i* further visits to *F*, not counting the visit in *p'*, hence a total of at most *i* + 1 visits from *p*.