
Bernd Finkbeiner Date: October 23, 2012

Automata, Games, and Veri�cation: Lecture 1

0 Course Organization

• Vertiefungsvorlesung (6 CP)

• www.react.uni-saarland.de/teaching/automata-games-veri�cation-12/

• Bernd Finkbeiner: E1.3/506, o�ce hours Wednesdays 3-4

• Felix Klein, Markus Rabe, Hazem Torfah

• Tutorial: �ursdays 2-4pm, Room 010, building E1.7.
Exception: �rst tutorial on Wednesday Oct 31, 12-2pm, Room U12 building E1.1

• Exams: End-of-term exam: February 14th, 2013, HS 001 & 002, E1.3 1pm-3:30pm
End-of-semester exam: April 4th, 2013, HS 001 & 002, E1.3

• Your �nal grade will depend 100% on the �nal exam.

• Every week, assignments will be given out and solutions presented the following week.
Credit points will be given to students who present correct solutions to problems during
the tutorial.

• Each problemwill be assigned in advance to a groupof twomembers (single person groups
are allowed). If your group is assigned a problem in a particular week, please stop by for a
15 minute meeting to discuss your solution (time slots are indicated on the problem sheet)
and present your solution at the tutorial.

• �e solutionswill not be graded. Problemswill be distributed fairly (on a rotating scheme),
and participation (max 1 unexcused no-show) is required to write the �nal exam.

• Challenge problems: not assigned to any group; take you out of the rotation once

• Literature:
Erich Grädel et al: Automata, Logics, and In�nite Games (available online)
Khoussainov/Nerode: Automata �eory and its Applications
Lecture notes (online a�er lecture)
Summary slides (online a�er lecture)

1 Motivation and Overview

1.1 Reactive Systems

We distinguish

• Transformational programs

x y

• Reactive systems

.

– nonterminating behavior

– interaction (program vs. environment)

Examples of reactive systems include controllers in embedded systems, operating systems,
communication protocols, and online applications. �e semantics of such systems is usually
given as a graph called transition system, where the nodes are states and the edges transitions.
�e nodes are labeled with sets of atomic propositions, i.e., basic facts that are true in a particular
state.

De�nition 1 A transition system (AP, S , s0,→, L) consists of
• AP: atomic propositions

• S: �nite set of states

reject

accept

submit review

close release

close release

sorry

congrat

Figure 1: Transition system for “BusyChair”.

linear-time properties

branching-time properties

alternating-time properties

logics automata and games

LTL S1S word automata

CTL

CTL* S2S tree automata

ATL

ATL* in�nite gamesSL

CL
games with

incomplete information

Figure 2: Logics, automata, and games for reactive systems.

• s0 ∈ S: initial state
• → ⊆ S × S: transition relation

• L ∶ S → 2AP: labeling function

Example: Figure 1 shows the transition system of “BusyChair,” a simple online application for
the management of submissions to academic conferences. A�er an author submits a paper, the
programme committee discusses whether to accept or reject the submission and �nally closes
the discussion and sends a message (congrats/sorry) to the authors.

1.2 Properties and Logic

We specify the correctness of a reactive systemusing collections of properties that can be checked
individually. We will in particular focus on properties expressed in temporal logic. Temporal
logics and properties can be classi�ed according to the linear/branching-time spectrum.

Example: Consider again the “BusyChair” application.

• “there is never both a sorry and congrat on the same computation path” is a linear-time
property

• “there is both a path with sorry and a path with congrat” is a branching-time property

• “authors cannot enforce congrat” is an alternating-time (or: game) property

We will consider various temporal logics along the linear/branching-time spectrum.

• Linear-time temporal logic (LTL) describes sets of in�nite sequences. A system is correct
if all the label sequences of the Kripke strucure are contained in this set.

• Computation-tree logic (CTL/CTL*) describes sets of in�nite trees. A system is correct if
the unrolling of the Kripke structure into a tree is an element of this set.

• Alternating-time temporal logic (ATL/ATL*) describes objectives for coalitions of agents.
A system is correct if the coalition has a strategy to accomplish the objective.

• Strategy logic (SL) relates multiple, existentially and universally quanti�ed strategies. A
system is correct if the speci�ed relation ship is true on the game arena de�ned by the
system.

• Coordination logic (CL) extends CL with strategies under incomplete information, such
as the information visible at the interface of a component.

In addition to the temporal logics, we will study a few other logics, in particular themonadic
second-order logics.

• Monadic second-order logic with one successor (S1S) is the logical representation of in�-
nite words. Its expressiveness exceeds that of LTL.

• Monadic second-order logic with two successors (S2S) is the logical representation of (bi-
nary) trees. Its expressiveness exceeds that of CTL*.

Figure 2 gives an overview over the logics and their relative expressiveness.

1.3 Automata and Games

We will see that all these logics correspond to various types of automata and games.

• Automata over in�nite words (ω-automata) recognize subsets of Σω, the set of in�nite
sequences over a given alphabet Σ.

• Automata over in�nite (binary) trees recognize subsets of {0, 1}∗ → Σ, the set of in�nite
binary trees labeled with letters from Σ.

• In�nite games over �nite graphs are two-player games where the plays are in�nite paths
through a game arena given as a �nite graph. Strategies in such games are mappings from
sequences of states (histories) to decisions.

• Games over incomplete information limit the informedness of the players. Strategies in
such games are mappings from sequences of observations to decisions.

Figure 2 relates the automata and games to the logics.

1.4 Linear-time properties

A linear-time property is a subset of (2AP)ω.

• �e set of natural numbers {0, 1, 2, 3, . . .} is denoted by ω.

• An alphabet Σ is a �nite set of symbols.

• An in�nite word (or sequence, string) is a function from natural numbers to an alphabet:

α ∶ ω → Σ

An in�nite word is composed of its letters, so that in particular α = α(0)α(1)α(2) . . .
• Σω: set of in�nite words over alphabet Σ.

• An ω-language L is a subset of Σω.

• Σ∗: set of �nite words over alphabet Σ.

• Σ+: set of �nite non-empty words over alphabet Σ.

• AP: set of atomic propositions

• 2AP: subsets of AP. For p ∈ AP, s ∈ 2AP we write s ⊧ p i� p ∈ s.

Linear-time temporal logic

Linear-time temporal logic (LTL) is a modal logic over in�nite sequences [Pnueli 1977].

Syntax

• Propositional logic

– a ∈ AP atomic proposition

– ¬φ and φ ∧ ψ negation and conjunction

• Temporal operators

– Xφ next state ful�lls φ

– φUψ φ holds Until a ψ-state is reached

• Derived operators

– F φ ≡ trueUφ “some time in the future”

– G φ ≡ ¬F¬φ “from now on forever”

a
a

arbitrary arbitrary arbitrary arbitrary

. . .

arbitrary

Xa

a arbitrary arbitrary arbitrary

. . .

a ∧ ¬b
aU b

a ∧ ¬b a ∧ ¬b b arbitrary

. . .

¬a
F a

¬a ¬a a arbitrary

. . .

a

G a

a a a a
. . .

Figure 3: Semantics of LTL

Semantics

An LTL formula φ over AP de�nes the linear-time property

L(φ) = {σ ∈ (2AP)ω ∣ σ ⊧ φ},

where ⊧ is the smallest relation satisfying:

σ ⊧ a i� a ∈ σ(0) (i.e., σ(0) ⊧ a)
σ ⊧ φ1 ∧ φ2 i� σ ⊧ φ1 and σ ⊧ φ2

σ ⊧ ¬φ i� σ /⊧ φ

σ ⊧ Xφ i� σ[1..] = σ(1)σ(2)σ(3) . . . ⊧ φ

σ ⊧ φ1Uφ2 i� ∃ j ≥ 0. σ[j..] ⊧ φ2 and σ[i ..] ⊧ φ1 for all 0 ≤ i < j

�e semantics is illustrated in Figure 3.

Example:

• G(¬ reject)

• ¬(F sorry ∧ F congrat)

• G(close → X release)

�e satisfaction of an LTL formula over a transition system is de�ned as follows:

• A path from a state s ∈ S is an in�nite sequence s0s1s2 . . . ∈ Sω such that s0 = s and si → si+1
for all i ≥ 0.

• �e trace of a path s0s1s2 . . . is an in�nite sequence aoa1a2 ∈ (2AP)ω such that ai = L(si)
for all i ≥ 0.

• T ⊧ φ: transition system T satis�es LTL formula φ i� Traces(T , s0) ⊆ L(φ),
where Traces(T , s): set of traces of paths from s in transition system T .

1.5 Branching-time properties

Computation tree logic (CTL)

CTL is a modal logic over in�nite trees [Clarke & Emerson 1981].

Syntax

• CTL state formulas.

– a ∈ AP atomic proposition

– ¬Φ and Φ ∧ Ψ negation and conjunction

– Eφ there exists a path ful�lling φ

– Aφ all paths ful�ll φ

• CTL path formulas.

– X Φ the next state ful�lls Φ

– ΦUΨ Φ holds until a Ψ-state is reached

Note that X and U alternate with A and E

Semantics

• CTL state formulas. Semantics de�ned by a relation⊧ such that s ⊧ Φ if and only if formula
Φ holds in state s.

s ⊧ a i� a ∈ L(s)

s ⊧ ¬Φ i� ¬ (s ⊧ Φ)

s ⊧ Φ ∧ Ψ i� (s ⊧ Φ) ∧ (s ⊧ Ψ)

s ⊧ Eφ i� π ⊧ φ for some path π that starts in s

s ⊧ Aφ i� π ⊧ φ for all paths π that start in s

• CTL path formulas. Semantics de�ned by a relation ⊧ such that π ⊧ φ if and only if path
π satis�es φ.

π ⊧ XΦ i� π[1] ⊧ Φ

π ⊧ ΦUΨ i� (∃ j ≥ 0. π[j] ⊧ Ψ ∧ (∀0 ≤ k < j. π[k] ⊧ Φ))

where π[i] denotes the state si in the path π

AF red
A (yellowU red)

E (yellowU red)EG red

AG red

EF red

Figure 4: Examples of CTL properties

�e satisfaction of a CTL formula over a transition system is de�ned as follows: T ⊧ Φ i� s0 ⊧ Φ.

Example:

• EF sorry ∧ EF congrat

• Figure 4 shows a few more examples of CTL formulas and their semantics.

1.6 Game properties

Concurrent game structures

reject

accept

submit review

close release

close release

sorry

congrat

(1, 1) (1, 1)

(1, 1
)

(1, 2)

(1, 3)

(1, 1) (1, 1)

(1, 2)

(1, 2)

(1, 3)

(1, 1) (1, 1)

(1
,1
)

(1
,1
)

(1,2)(1
, 1
)

De�nition 2 A concurrent game structure (k,AP, S , s0, d , δ, L) consists of

• k ∈ N: number of players

• AP: atomic propositions

• S: �nite set of states, s0 ∈ S: initial state

• d ∶ {1, . . . , k} × S → N: number of moves available to player

• δ ∶ S × {1, . . . , d(1)} × . . . × {1, . . . , d(k)}→ S: transition function

• L ∶ S → 2AP: labeling function

Alternating temporal logic (ATL)

Syntax

• ATL state formulas:

– a ∈ AP atomic proposition

– ¬Φ and Φ ∧ Ψ negation and conjunction

– ⟨⟨A⟩⟩φ agents in A have strategy to enforce φ

• ATL path formulas as for CTL.

A ⊆ {1, . . . , k} is a set of players.

Semantics.

• A strategy for player a is a function fa ∶ S+ → N

such that fa(σ ⋅ q) ≤ da(q).

• Given a set FA = { fa ∣ a ∈ A} of strategies for a set of players A,
the outcomes Outcomes(FA, s) of FA from state s are the paths s0s1s2 . . . such that s0 = s and
for all i ≥ 0 there is a vector (j1, . . . , jk) ∈ Nk such that

– ja = fa(s0 . . . si) for all players a ∈ A, and

– δ(si , j1, . . . , jk) = si+1

• s ⊧ ⟨⟨A⟩⟩φ i� there exists a set of strategies FA for the players in A,
such that π ⊧ φ for all π ∈ Outcomes(FA, s).

Example:

• ¬⟨⟨{1}⟩⟩F congrat

• ⟨⟨{2}⟩⟩F congrat ∧ ⟨⟨{2}⟩⟩F sorry

Comment: ATL subsumes CTL: AΦ ≡ ⟨⟨∅⟩⟩Φ, EΦ ≡ ⟨⟨{1, . . . , k}⟩⟩Φ

1.7 Veri�cation and Synthesis

• Veri�cation. “Does a given system satisfy a given property?”

• Realizabilty/Synthesis. “Does there exist a system that satis�es a given property?”

