Automata, Games & Verification

#9

Theorem 1. Every QPTL-definable language is S1S-definable.

Theorem 2. Every S1S-definable language is Büchi-recognizable.

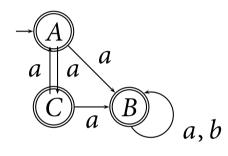
Theorem 3. A language is WS1S-definable iff it is S1S-definable.

Hence:

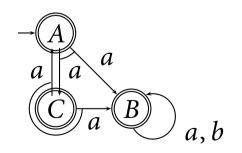
 $LTL \subsetneq QPTL \subseteq (W)S1S \subseteq Büchi \subseteq QPTL.$

Alternating Automata

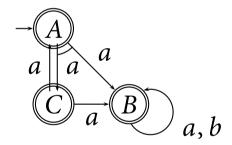
- nondeterministic automaton,
 - $L = a(a+b)^{\omega}:$



• universal automaton, $L = a^{\omega}$:



• alternating automaton, $L = aa(a+b)^{\omega}$



Definition 1. An alternating Büchi automaton is a tuple $\mathcal{A} = (S, s_0, \delta, F)$, where:

- *S* is a finite set of states,
- $s_0 \in S$ is the initial state,
- $F \subseteq S$ is the set of accepting states, and
- $\delta: S \times \Sigma \to \mathbb{B}^+(S)$ is the transition function.

Definition 2. A *run* of an alternating automaton on a word $\alpha \in \Sigma^{\omega}$ is an *S*-labeled tree $\langle T, r \rangle$ with the following properties:

- $r(\varepsilon) = s_0$ and
- for all $n \in T$, if r(n) = s, then $\{r(n') \mid n' \in children(n)\}$ satisfies $\delta(s, \alpha(|n|))$.

Example:

$$L = (\{a, b\}^* b)^{\omega}$$

$$A = (\{a, b\}^* b)^{\omega}$$

example word $w = (aab)^{\omega}$ has the following run:

