Automata, Games & Verification

#3

Definition 1. A (*nondeterministic*) Büchi automaton \mathcal{A} over alphabet Σ is a tuple (S, I, T, F):

- *S* : *a* finite set of states;
- $I \subseteq S$: a subset of initial states;
- $T \subseteq S \times \Sigma \times S$: a set of transitions;
- $F \subseteq S$: a subset of accepting states.

Definition 2. A run of a nondeterministic Büchi automaton \mathcal{A} on an infinite input word $\alpha = \sigma_0 \sigma_1 \sigma_2 \dots$ is an infinite sequence of states s_0, s_1, s_2, \dots such that $s_0 \in I$ and for all $i \in \omega$, $(s_i, \sigma_i, s_{i+1}) \in T$.

Definition 3. A Büchi automaton A is deterministic when

- *I* is a singleton and
- $\forall \sigma \in \Sigma, \forall s, s_0, s_1 \in S$. $(s, \sigma, s_0) \in T \text{ and } (s, \sigma, s_1) \in T \implies s_0 = s_1.$

Definition 4. The infinity set of an infinite word $\alpha \in \Upsilon^{\omega}$ is defined as follows

$$In(\alpha) = \{v \in \Upsilon \mid \forall i \exists j \, j \geq i \text{ and } \alpha(j) = v\}.$$

Definition 5. [Büchi Acceptance Condition] A run $r = s_0 s_1 s_2 \dots$ of a Büchi automaton A is accepting if

$$In(r) \cap F \neq \emptyset.$$

Definition 6. A Büchi automaton A accepts an infinite word α if there is an accepting run of A on α .

Definition 7. The language recognized by Büchi automaton A is defined as follows:

 $\mathcal{L}(\mathcal{A}) = \{ \alpha \in \Sigma^{\omega} \, | \, \mathcal{A} \text{ accepts } \alpha \}.$

Definition 8. An ω -language L is Büchi recognizable if there is a Büchi automaton \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = L$.

Definition 9. A Büchi automaton is complete if

$$\forall s \in S, \sigma \in \Sigma, \exists s' \in S \, . \, (s, \sigma, s') \in T.$$

Theorem 1. For every Büchi automaton A, there is a complete Büchi automaton A' such that $\mathcal{L}(A) = \mathcal{L}(A')$.

Büchi's Characterization Theorem

Definition 10. The ω -regular expressions are defined as follows.

- If R is an regular expression where $\varepsilon \notin \mathcal{L}(R)$, then R^{ω} is an ω -regular expression. $\mathcal{L}(R^{\omega}) = \mathcal{L}(R)^{\omega}$ where $L^{\omega} = \{u_0 u_1 \dots | u_i \in L, |u_i| > 0 \text{ for all } i \in \omega\}$ for $L \subseteq \Sigma^*$.
- If R is a regular expression and U is an ω-regular expression, then R · U is an ω-regular expression.
 L(R · U) = L(R) · L(U) where L₁ · L₂ = {r · u | r ∈ L₁, u ∈ L₂} for L₁ ⊆ Σ*, L₂ ⊆ Σ^ω.
- If U_1 and U_2 are ω -regular expressions, then $U_1 + U_2$ is an ω -regular expression. $\mathcal{L}(U_1 + U_2) = \mathcal{L}(U_1) \cup \mathcal{L}(U_2)$.

Definition 11. An ω -regular language is a finite union of ω -languages of the form $U \cdot V^{\omega}$ where $U, V \subseteq \Sigma^*$ are regular languages.

Theorem 2. If L_1 and L_2 are Büchi recognizable, then so is $L_1 \cup L_2$.

Theorem 3. If L_1 and L_2 are Büchi recognizable, then so is $L_1 \cap L_2$.

Theorem 4. If L_1 is a regular language and L_2 is Büchi recognizable, then $L_1 \cdot L_2$ is Büchi-recognizable.

Theorem 5. If L is a regular language then L^{ω} is Büchi recognizable.

Theorem 6. [Büchi's Characterization Theorem (1962)] An ω -language is Büchi recognizable iff it is ω -regular.