Automata, Games & Verification

#2

- The set of natural numbers $\{0, 1, 2, 3, ...\}$ is denoted by ω .
- An alphabet Σ is a finite set of symbols.
- An infinite sequence/string/word is a function from natural numbers to an alphabet:

 $\alpha:\omega\to\Sigma$

Notation: $\alpha = \alpha(0)\alpha(1)\alpha(2)...$

- The set of infinite words over alphabet Σ is denoted Σ^{ω} .
- An ω -language L is a subset of Σ^{ω} .

BACKGROUND: The Kleene Theorem

Definition 1. The regular expressions are defined as follows:

- The constants ε and \emptyset are regular expressions. $\mathcal{L}(\varepsilon) = \{\varepsilon\}, \mathcal{L}(\emptyset) = \emptyset.$
- If $a \in \Sigma$ is a symbol, then **a** is a regular expression. $\mathcal{L}(\mathbf{a}) = \{a\}.$
- If *E* and *F* are regular expressions, then E + F is a regular expression: $\mathcal{L}(E + F) = \mathcal{L}(E) \cup \mathcal{L}(F).$
- If *E* and *F* are regular expressions, then $E \cdot F$ is a regular expression: $\mathcal{L}(E \cdot F) = \{uv \mid u \in \mathcal{L}(E), v \in \mathcal{L}(F)\}.$
- If *E* is a regular expression, then E^* is a regular expression. $\mathcal{L}(E^*) = \{u_1 u_2 \dots u_n \mid n \in \omega, u_i \in \mathcal{L}(E) \forall 0 \le i \le n\}.$

Definition 2. A language is regular if it is defined by a regular expression.

Theorem 1. [Kleene Theorem] A language is regular iff it is recognized by some finite word automaton.