Automata, Games \& Verification

- The set of natural numbers $\{0,1,2,3, \ldots\}$ is denoted by ω.
- An alphabet Σ is a finite set of symbols.
- An infinite sequence/string/word is a function from natural numbers to an alphabet:
$\alpha: \omega \rightarrow \Sigma$
Notation: $\alpha=\alpha(0) \alpha(1) \alpha(2) \ldots$
- The set of infinite words over alphabet Σ is denoted Σ^{ω}.
- An ω-language L is a subset of Σ^{ω}.

BACKGROUND: The Kleene Theorem

Definition 1. The regular expressions are defined as follows:

- The constants ε and \varnothing are regular expressions. $\mathcal{L}(\varepsilon)=\{\varepsilon\}, \mathcal{L}(\varnothing)=\varnothing$.
- If $a \in \sum$ is a symbol, then \mathbf{a} is a regular expression. $\mathcal{L}(\mathbf{a})=\{a\}$.
- If E and F are regular expressions, then $E+F$ is a regular expression: $\mathcal{L}(E+F)=\mathcal{L}(E) \cup \mathcal{L}(F)$.
- If E and F are regular expressions, then $E \cdot F$ is a regular expression: $\mathcal{L}(E \cdot F)=\{u v \mid u \in \mathcal{L}(E), v \in \mathcal{L}(F)\}$.
- If E is a regular expression, then E^{*} is a regular expression.

$$
\mathcal{L}\left(E^{*}\right)=\left\{u_{1} u_{2} \ldots u_{n} \mid n \in \omega, u_{i} \in \mathcal{L}(E) \forall 0 \leq i \leq n\right\} .
$$

Definition 2. A language is regular if it is defined by a regular expression.

Theorem 1. [Kleene Theorem] A language is regular iff it is recognized by some finite word automaton.

