Automata, Games & Verification

#11

Games

Definition 1. A game arena is a triple $\mathcal{A} = (V_0, V_1, E)$, where

- V₀ and V₁ are disjoint sets of positions, called the positions of player 0 and 1,
- $E \subseteq V \times V$ for set $V = V_0 \uplus V_1$ of game positions,
- every position $p \in V$ has at least one outgoing edge $(p, p') \in E$.

Definition 2.

- A reachability game $\mathcal{G} = (\mathcal{A}, R)$ consists of a game arena and a winning set of positions $R \subseteq V$. Player 0 wins a play $\pi = p_0 p_1 \dots$ if $p_i \in R$ for some $i \in \omega$, otherwise Player 1 wins.
- A Büchi game $\mathcal{G} = (\mathcal{A}, F)$ consists of an arena \mathcal{A} and a set $F \subseteq V$. Player 0 wins a play π if $In(\pi) \cap F \neq \emptyset$, otherwise Player 1 wins.

• . . .

Definition 3. A play is an infinite sequence $\pi = p_0 p_1 p_2 \dots \in V^{\omega}$ such that $\forall i \in \omega . (p_i, p_{i+1}) \in E$.

Definition 4. A strategy for player σ is a function $f_{\sigma} : V^* \cdot V_{\sigma} \to V$ s.t. $(p, p') \in E$ whenever $f(u \cdot p) = p'$.

Definition 5. A play $\pi = p_0, p_1, \dots$ conforms to strategy f_{σ} of player σ if $\forall i \in \omega$. if $p_i \in V_{\sigma}$ then $p_{i+1} = f_{\sigma}(p_0, \dots, p_i)$.

Definition 6.

- A strategy f_{σ} is *p*-winning for player σ and position *p* if all plays that conform to f_{σ} and that start in *p* are won by Player σ .
- The winning region for player σ is the set of positions

 $W_{\sigma} = \{ p \in V \mid \text{there is a strategy } f_{\sigma} \text{ s.t. } f_{\sigma} \text{ is } p \text{-winning} \}.$

Definition 7. A game is determined if $V = W_0 \cup W_1$.

Definition 8.

- A memoryless strategy for player σ is a function $f_{\sigma} : V_{\sigma} \to V$ which defines a strategy $f'_{\sigma}(u \cdot v) = f(v)$.
- A game is memoryless determined if for every position some player wins the game with memoryless strategy.

Solving Reachability Games

Attractor construction:

$$\begin{aligned} Attr_{\sigma}^{0}(X) &= \varnothing; \\ Attr_{\sigma}^{i+1}(X) &= Attr_{\sigma}^{i}(X) \\ & \cup \{p \in V_{\sigma} \mid \exists p' . (p, p') \in E \land p' \in Attr_{\sigma}^{i}(X) \cup X\} \\ & \cup \{p \in V_{1-\sigma} \mid \forall p' . (p, p') \in E \Rightarrow p' \in Attr_{\sigma}^{i}(X) \cup X\}; \end{aligned}$$

$$Attr_{\sigma}^{+}(X) = \bigcup_{i \in \omega} Attr_{\sigma}^{i}(X).$$

 $Attr_{\sigma}(X) = Attr_{\sigma}^{+}(X) \cup X$

Attractor strategy:

- Fix an arbitrary total ordering on V.
- for $p \in V_0$ we define $f_0(q)$:
 - -- if $p \in Attr_0^i(R)$ for some smallest i > 0, choose the minimal $p' \in Attr_0^{i-1}(R) \cup R$ such that $(p, p') \in E$;
 - -- otherwise, choose the minimal $p' \in V$ such that $(p, p') \in E$.

Solving Büchi Games

Recurrence construction:

 $Recur_{\sigma}^{0} = F;$ $Recur_{\sigma}^{i+1} = F \cap Attr_{\sigma}^{+}(Recur_{\sigma}^{i});$

 $Recur_{\sigma} = \bigcap_{i \in \omega} Recur_{\sigma}^{i}$.

Theorem 1. Reachability and Büchi games are memoryless determined.