Automata, Games & Verification

Summary #2

Büchi's Characterization Theorem

Definition 1. The ω -regular expressions are defined as follows.

- If R is an regular expression where ε ∉ L(R), then R^ω is an ω-regular expression. L(R^ω) = L(R)^ω where L^ω = {u₀u₁... | u_i ∈ L, |u_i| > 0 for all i ∈ ω} for L ⊆ Σ*.
- If R is a regular expression and U is an ω-regular expression, then R · U is an ω-regular expression.
 L(R · U) = L(R) · L(U) where L₁ · L₂ = {r · u | r ∈ L₁, u ∈ L₂} for L₁ ⊆ Σ*, L₂ ⊆ Σ^ω.
- If U_1 and U_2 are ω -regular expressions, then $U_1 + U_2$ is an ω -regular expression. $\mathcal{L}(U_1 + U_2) = \mathcal{L}(U_1) \cup \mathcal{L}(U_2)$.

Definition 2. An ω -regular language is a finite union of ω -languages of the form $U \cdot V^{\omega}$ where $U, V \subseteq \Sigma^*$ are regular languages.

Theorem 1. If L_1 and L_2 are Büchi recognizable, then so is $L_1 \cup L_2$.

Theorem 2. If L_1 and L_2 are Büchi recognizable, then so is $L_1 \cap L_2$.

Theorem 3. If L_1 is a regular language and L_2 is Büchi recognizable, then $L_1 \cdot L_2$ is Büchi-recognizable.

Theorem 4. If *L* is a regular language then L^{ω} is Büchi recognizable.

Theorem 5. [Büchi's Characterization Theorem (1962)] An ω -language is Büchi recognizable iff it is ω -regular.