Automata, Games & Verification Summary #13

Today at 2:15pm in SR 016

Seminar "Games, Synthesis, and Robotics" *Alternating-Time Temporal Logic*

Kripke structures

Definition 1. Let AP be a set of atomic propositions. A Kripke structure over AP is a tuple $\mathcal{M} = (S, R, L)$

- S : a set of states
- $R \subseteq S \times S$: a transition relation
- $L:S\to 2^{AP}$: labels each state with the set of atomic propositions that are assured to be true in S

Computation Tree Logic

CTL* Syntax (f, g - state formulas, φ, ψ - path formulas):

• State formulas *f*:

$$f ::= AP \mid \neg f \mid f \lor g \mid A\varphi \mid E\varphi$$

• Path formulas φ :

$$\varphi ::= f \mid \neg \varphi \mid \varphi \lor \psi \mid G\varphi \mid F\varphi \mid \varphi U\psi \mid X\varphi$$

CTL* Semantics (\mathcal{M} - Kripke structure, s - state, π^i - suffix of π starting at i):

- $\mathcal{M}, s \models p \text{ iff } p \in L(s) \text{ for } p \in AP$
- $\mathcal{M}, s \models \neg f \text{ iff } \mathcal{M}, s \not\models f$
- $\mathcal{M}, s \models \mathsf{E}\varphi$ iff there is a path π from s such that $\mathcal{M}, \pi \models \varphi$
- $\mathcal{M}, s \models \mathsf{A}\varphi$ iff for every path π from s such that $\mathcal{M}, \pi \models \varphi$
- $\mathcal{M}, \pi \models f$ iff $\mathcal{M}, s \models f$ where $\pi = s\pi^1$
- $\mathcal{M}, \pi \models \neg \varphi$ iff $\mathcal{M}, \pi \not\models \varphi$
- $\mathcal{M}, \pi \models \varphi \lor \psi$ iff $\mathcal{M}, \pi \models \varphi$ or $\mathcal{M}, \pi \models \psi$
- $\mathcal{M}, \pi \models \varphi \ \mathcal{U} \ \psi$ iff there exists i such that for every j < i $\mathcal{M}, \pi^j \models \varphi$ and $\mathcal{M}, \pi^i \models \psi$
- $\mathcal{M}, \pi \models \mathsf{X}\varphi$ iff $\mathcal{M}, \pi^1 \models \varphi$

LTL. Special case of CTL* formulas: A φ , where φ is a path formula with only atomic propositions as state subformulas. CTL. Special case of CTL* formulas where each temporal operator must immediately be preceded by a path quantifier.

Theorem 1. For every CTL^* formula Φ , the following are equivalent:

- 1. there is an LTL formula $A \varphi$ that is equivalent to Φ
- 2. Φ is equivalent to $A(remove_{E,A}(\Phi))$, where $remove_{E,A}(\Phi)$ is obtained from Φ by deleting all path quantifiers.

The Modal μ **-calculus**

Syntax: given a set of atomic propositions AP, the set of formulas is defined inductively as follows (where φ and ψ are formulas)

• \bot, \top

- $\bullet \ p, \neg p \text{ for every } p \in AP$
- $\varphi \wedge \psi$, $\varphi \vee \psi$
- $\Box \varphi$, $\Diamond \varphi$
- $\mu p \varphi$, $\nu p \varphi$, where $p \in AP$ and p only occurs positively in φ .

Semantics: Formulas are interpreted as sets of states.

- $\bullet \ \left\|\bot\right\|_{\mathcal{M}} = \varnothing$
- $\|\top\|_{\mathcal{M}} = S$
- $\|p\|_{\mathcal{M}} = \{s | p \in L(s)\}$
- $\|\neg p\|_{\mathcal{M}} = \{s | p \notin L(s)\}$
- $\|\varphi \lor \psi\|_{\mathcal{M}} = \|\varphi\|_{\mathcal{M}} \cup \|\psi\|_{\mathcal{M}}, \ \|\varphi \land \psi\|_{\mathcal{M}} = \|\varphi\|_{\mathcal{M}} \cap \|\psi\|_{\mathcal{M}}$
- $\|\Box\varphi\|_{\mathcal{M}} = \{s|\forall t.(s,t)\in R \to t\in \|\varphi\|_{\mathcal{M}}\}$
- $\| \diamondsuit \varphi \|_{\mathcal{M}} = \{ s | \exists t.(s,t) \in R \land t \in \| \varphi \|_{\mathcal{M}} \}$
- $\|\mu p.\varphi\|_{\mathcal{M}} = \bigcap \{S' \subseteq S \mid \|\varphi\|_{\mathcal{M}[p \mapsto S]} \subseteq S'\}$
- $\|\nu p.\varphi\|_{\mathcal{M}} = \bigcup \{S' \subseteq S \mid \|\varphi\|_{\mathcal{M}[p \mapsto S]} \supseteq S'\}$
- $(\mathcal{M}, s) \models \varphi \text{ iff } s \in \|\varphi\|_{\mathcal{M}}$