Automata, Games \& Verification

Summary \#13

Today at 2:15pm in SR 016
Seminar "Games, Synthesis, and Robotics"
Alternating-Time Temporal Logic

Kripke structures

Definition 1. Let $A P$ be a set of atomic propositions. A Kripke structure over $A P$ is a tuple $\mathcal{M}=(S, R, L)$

- S : a set of states
- $R \subseteq S \times S$: a transition relation
- $L: S \rightarrow 2^{A P}$: labels each state with the set of atomic propositions that are assured to be true in S

Computation Tree Logic

CTL* Syntax (f, g - state formulas, φ, ψ - path formulas):

- State formulas f :

$$
f::=A P|\neg f| f \vee g|A \varphi| E \varphi
$$

- Path formulas φ :

$$
\varphi::=f|\neg \varphi| \varphi \vee \psi|G \varphi| F \varphi|\varphi U \psi| X \varphi
$$

CTL* Semantics (\mathcal{M} - Kripke structure, s - state, π^{i} - suffix of π starting at i):

- $\mathcal{M}, s \models p$ iff $p \in L(s)$ for $p \in A P$
- $\mathcal{M}, s \models \neg f$ iff $\mathcal{M}, s \not \models f$
- $\mathcal{M}, s \models \mathrm{E} \varphi$ iff there is a path π from s such that $\mathcal{M}, \pi \models \varphi$
- $\mathcal{M}, s \models \mathrm{~A} \varphi$ iff for every path π from s such that $\mathcal{M}, \pi \models \varphi$
- $\mathcal{M}, \pi \models f$ iff $\mathcal{M}, s \models f$ where $\pi=s \pi^{1}$
- $\mathcal{M}, \pi \models \neg \varphi$ iff $\mathcal{M}, \pi \not \models \varphi$
- $\mathcal{M}, \pi \models \varphi \vee \psi$ iff $\mathcal{M}, \pi \models \varphi$ or $\mathcal{M}, \pi \models \psi$
- $\mathcal{M}, \pi \models \varphi \mathcal{U} \psi$ iff there exists i such that for every $j<i$

$$
\mathcal{M}, \pi^{j} \models \varphi \text { and } \mathcal{M}, \pi^{i} \models \psi
$$

- $\mathcal{M}, \pi \models \mathrm{X} \varphi$ iff $\mathcal{M}, \pi^{1} \models \varphi$

LTL. Special case of CTL* formulas: A φ, where φ is a path formula with only atomic propositions as state subformulas.
CTL. Special case of CTL* formulas where each temporal operator must immediately be preceeded by a path quantifier.

Theorem 1. For every CTL* formula Φ, the following are equivalent:

1. there is an LTL formula $A \varphi$ that is equivalent to Φ
2. Φ is equivalent to $A\left(\right.$ remove $\left._{E, A}(\Phi)\right)$, where remove ${ }_{E, A}(\Phi)$ is obtained from Φ by deleting all path quantifiers.

The Modal μ-calculus

Syntax: given a set of atomic propositions $A P$, the set of formulas is defined inductively as follows (where φ and ψ are formulas)

- \perp, \top
- $p, \neg p$ for every $p \in A P$
- $\varphi \wedge \psi, \varphi \vee \psi$
- $\square \varphi, \diamond \varphi$
- $\mu p \varphi, \nu p \varphi$, where $p \in A P$ and p only occurs positively in φ.

Semantics: Formulas are interpreted as sets of states.

- $\|\perp\|_{\mathcal{M}}=\varnothing$
- $\|\top\|_{\mathcal{M}}=S$
- $\|p\|_{\mathcal{M}}=\{s \mid p \in L(s)\}$
- $\|\neg p\|_{\mathcal{M}}=\{s \mid p \notin L(s)\}$
- $\|\varphi \vee \psi\|_{\mathcal{M}}=\|\varphi\|_{\mathcal{M}} \cup\|\psi\|_{\mathcal{M}},\|\varphi \wedge \psi\|_{\mathcal{M}}=\|\varphi\|_{\mathcal{M}} \cap\|\psi\|_{\mathcal{M}}$
- $\|\square \varphi\|_{\mathcal{M}}=\left\{s \mid \forall t .(s, t) \in R \rightarrow t \in\|\varphi\|_{\mathcal{M}}\right\}$
- $\|\diamond \varphi\|_{\mathcal{M}}=\left\{s \mid \exists t .(s, t) \in R \wedge t \in\|\varphi\|_{\mathcal{M}}\right\}$
- $\|\mu p . \varphi\|_{\mathcal{M}}=\bigcap\left\{S^{\prime} \subseteq S \mid\|\varphi\|_{\mathcal{M}[p \mapsto S]} \subseteq S^{\prime}\right\}$
- $\|\nu p . \varphi\|_{\mathcal{M}}=\bigcup\left\{S^{\prime} \subseteq S \mid\|\varphi\|_{\mathcal{M}[p \mapsto S]} \supseteq S^{\prime}\right\}$
- $(\mathcal{M}, s) \models \varphi$ iff $s \in\|\varphi\|_{\mathcal{M}}$

