Automata, Games \& Verification

Summary \#12

Today at 2:15pm in SR 016
Seminar "Games, Synthesis, and Robotics"
Design and Synthesis of Synchronization Skeletons using Branching Time Temporal Logic

Complementation of Parity Tree Automata

Theorem 1. For each parity tree automaton \mathcal{A} over Σ there is a parity tree automaton \mathcal{A}^{\prime} with $\mathcal{L}\left(\mathcal{A}^{\prime}\right)=T_{\Sigma}-\mathcal{L}(\mathcal{A})$.
\mathcal{A} does not accept t iff
(1) there is a $(M \rightarrow\{0,1\})$-tree v such that
(2) for all $i_{0}, i_{1}, i_{2}, \ldots \in\{0,1\}^{\omega}$
(3) for all $\tau_{0}, \tau_{1}, \ldots \in M^{\omega}$
(4) if

- for all j,

$$
\begin{aligned}
& \tau_{j}=\left(q, a, q_{0}^{\prime}, q_{1}^{\prime}\right) \\
& \Rightarrow a=t\left(i_{0}, i_{1}, \ldots, i_{j}\right) \text { and }
\end{aligned}
$$

- $i_{0} i_{1} \ldots=v(\varepsilon)\left(\tau_{0}\right) v\left(i_{0}\right)\left(\tau_{1}\right) \ldots$
then the generated state sequence $q_{0} q_{1} \ldots$

$$
\begin{aligned}
& \text { with } q_{0}=s_{0},\left(q_{j}, a, q^{0}, q^{1}\right)=\tau_{j}, \\
& q_{j+1}=q^{v\left(i_{0}, \ldots, i_{j-1}\right)\left(\tau_{j}\right)} \\
& \text { violates } c .
\end{aligned}
$$

Monadic Second-Order Theory of Two Successors (S2S)

Syntax:

- first-order variable set $V_{1}=\left\{x_{0}, x_{1}, \ldots\right\}$
- second-order variable set $V_{2}=\left\{X_{0}, X_{1}, \ldots\right\}$
- Terms: $t::=\epsilon|x| t 0 \mid t 1$
- Formulas $\varphi::=t \in X\left|t_{1}=t_{2}\right| \neg \varphi\left|\varphi_{0} \vee \varphi_{1}\right| \exists x . \varphi \mid \exists X . \varphi$

Semantics:

- first-order valuation $\sigma_{1}: V_{1} \rightarrow \mathbb{B}^{*}$
- second-order valuation $\sigma_{2}: V_{2} \rightarrow 2^{\mathbb{B}^{*}}$
- terms: $\llbracket \epsilon \rrbracket=\epsilon, \llbracket t 0 \rrbracket_{\sigma_{1}}=\llbracket t \rrbracket_{\sigma_{1}} 0$, etc.
- formulas: $\sigma_{1}, \sigma_{2} \models \exists x_{i} . \varphi$ iff there is a $a \in \mathbb{B}^{*}$ s.t.

$$
\sigma_{1}^{\prime}(y)=\left\{\begin{array}{ll}
\sigma_{1}(y) & \text { if } x \neq y, \\
a & \text { otherwise } ;
\end{array} \quad \text { and } \sigma_{1}^{\prime}, \sigma_{2} \models \varphi\right.
$$

etc.

Theorem 2. For each Muller tree automaton $\mathcal{A}=\left(S, s_{0}, M, \mathcal{F}\right)$ over $\Sigma=2^{V_{2}}$ there is a S2S formula φ over V_{2} s.t. $t \in \mathcal{L}(\mathcal{A})$ iff $\sigma_{2} \models \varphi$ where $\sigma_{2}(P)=\left\{q \in\{0,1\}^{*} \mid P \in t(q)\right\}$.

Theorem 3. For every S2S formula φ over V_{1}, V_{2} there is a Muller tree automaton \mathcal{A} over $\Sigma=2^{V_{1} \cup V_{2}}$ such that $t \in \mathcal{L}(\mathcal{A})$ iff $\sigma_{1}, \sigma_{2} \models \varphi$ where

$$
\begin{aligned}
\sigma_{1}(x) & =q \text { iff } x \in t(q) \\
\sigma_{2}(X) & =\left\{q \in\{0,1\}^{*} \mid X \in t(q)\right\}
\end{aligned}
$$

Corollary 1.
S2S is decidable.

- $\mathrm{S} n \mathrm{~S}$ is the monadic second order theory of n successors.

Corollary 2.

SnS is decidable.

- $S \omega S$ is the monadic second order theory of ω successors.

Theorem 4. $\quad S \omega S$ is decidable.

- WS2S is the weak monadic second order theory of two successors.
$\sigma_{1}, \sigma_{2} \models \exists X$. φ iff there is a finite $A \subseteq \mathbb{B}^{*}$ s.t.

$$
\sigma_{2}^{\prime}(Y)=\left\{\begin{array}{ll}
\sigma_{2}(Y) & \text { if } X \neq Y \\
A & \text { otherwise }
\end{array} \quad \text { and } \quad \sigma_{1}, \sigma_{2}^{\prime} \models \varphi .\right.
$$

Corollary 3.

WS2S is decidable.
Theorem 5. For a language $L \subseteq T_{\Sigma}$, the following are equivalent:

1. Both L and its complement are recognizable by a Büchi tree automaton.
2. L is WS2S-definable.

Corollary 4.
WS2S is strictly weaker than S2S.

