Automata, Games & Verification

Summary #10

Today at 2:15pm in SR 016

Seminar "Games, Synthesis, and Robotics"

Non-communicative multi-robot coordination in dynamic environments

Games

Definition 1. A game arena is a triple $\mathcal{A} = (V_0, V_1, E)$, where

- V₀ and V₁ are disjoint sets of positions, called the positions of player 0 and 1,
- $E \subseteq V \times V$ for set $V = V_0 \uplus V_1$ of game positions,
- every position $p \in V$ has at least one outgoing edge $(p, p') \in E$.

Definition 2.

- A reachability game G = (A, R) consists of a game arena and a winning set of positions R ⊆ V. Player 0 wins a play π = p₀p₁... if p_i ∈ R for some i ∈ ω, otherwise Player 1 wins.
- A Büchi game $\mathcal{G} = (\mathcal{A}, F)$ consists of an arena \mathcal{A} and a set $F \subseteq V$. Player 0 wins a play π if $In(\pi) \cap F \neq \emptyset$, otherwise Player 1 wins.

• . . .

Definition 3. A play is an infinite sequence $\pi = p_0 p_1 p_2 \ldots \in V^{\omega}$ such that $\forall i \in \omega \ (p_i, p_{i+1}) \in E$.

Definition 4. A strategy for player σ is a function $f_{\sigma}: V^* \cdot V_{\sigma} \to V$ s.t. $(p, p') \in E$ whenever $f(u \cdot p) = p'$.

Definition 5. A play $\pi = p_0, p_1, \dots$ conforms to strategy f_{σ} of player σ if $\forall i \in \omega$. if $p_i \in V_{\sigma}$ then $p_{i+1} = f_{\sigma}(p_0, \dots, p_i)$.

Definition 6.

- A strategy f_{σ} is *p*-winning for player σ and position *p* if all plays that conform to f_{σ} and that start in *p* are won by Player σ .
- The winning region for player σ is the set of positions

 $W_{\sigma} = \{ p \in V \mid \text{there is a strategy } f_{\sigma} \text{ s.t. } f_{\sigma} \text{ is } p\text{-winning} \}.$

Definition 7. A game is determined if $V = W_0 \cup W_1$.

Definition 8.

- A memoryless strategy for player σ is a function $f_{\sigma}: V_{\sigma} \to V$ which defines a strategy $f'_{\sigma}(u \cdot v) = f(v)$.
- A game is memoryless determined if for every position some player wins the game with memoryless strategy.

Solving Reachability Games

Attractor construction:

$$\begin{aligned} Attr^{0}_{\sigma}(X) &= \varnothing; \\ Attr^{i+1}_{\sigma}(X) &= Attr^{i}_{\sigma}(X) \\ & \cup \{ p \in V_{\sigma} \mid \exists p' \ . \ (p,p') \in E \land p' \in Attr^{i}_{\sigma}(X) \cup X \} \\ & \cup \{ p \in V_{1-\sigma} \mid \forall p' \ . \ (p,p') \in E \Rightarrow p' \in Attr^{i}_{\sigma}(X) \cup X \}; \end{aligned}$$

$$Attr^+_{\sigma}(X) = \bigcup_{i \in \omega} Attr^i_{\sigma}(X).$$

 $Attr_{\sigma}(X) = Attr_{\sigma}^{+}(X) \cup X$

Attractor strategy:

- Fix an arbitrary total ordering on V.
- for $p \in V_0$ we define $f_0(q)$:
 - if $p \in Attr_0^i(R)$ for some smallest i > 0, choose the minimal $p' \in Attr_0^{i-1}(R) \cup R$.
 - otherwise, choose the minimal $p' \in V$ such that $(p, p') \in E$.

Solving Büchi Games

Recurrence construction:

 $Recur_{\sigma}^{0} = F;$ $Recur_{\sigma}^{i+1} = F \cap Attr_{\sigma}^{+}(Recur_{\sigma}^{i});$

 $Recur_{\sigma} = \bigcap_{i \in \omega} Recur_{\sigma}^{i}.$

Theorem 1. Reachability and Büchi games are memoryless determined.

Theorem 2. Parity games are memoryless determined.

Assumptions:

- arena is finite or countably infinite.
- the number of colors is finite (max color k).

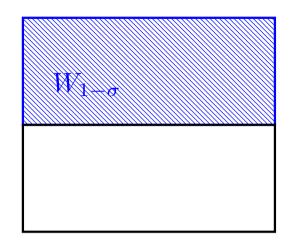
Proof by induction on k:

- k = 0: $W_0 = V, W_1 = \emptyset$. Memoryless winning strategy: fix arbitrary order on V. $f_0(p) = \min\{q \mid (p,q) \in E\}$.
- k + 1:
 - If k + 1, consider player $\sigma = 0$, otherwise $\sigma = 1$.
 - Let $W_{1-\sigma}$ be the set of positions where Player $(1-\sigma)$ has a memoryless winning strategy. We show that Player σ has a memoryless winning strategy from $V \smallsetminus W_{1-\sigma}$.

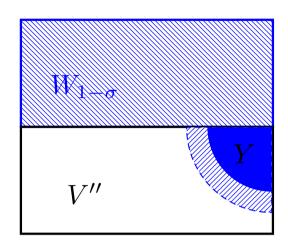
- Consider subgame \mathcal{G}' : * $V'_0 = V_0 \smallsetminus W_{1-\sigma}$; * $V'_1 = V_1 \smallsetminus W_{1-\sigma}$; * $E' = W \cap (V' \times V')$; * c'(p) = c(p) for all $p \in V'$.
- \mathcal{G}' is still a game.

- Let
$$C'_{i} = \{ p \in V' \mid c'(p) = i \}.$$

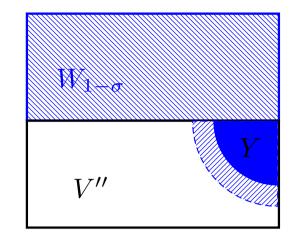
- Let $Y = Attr'_{\sigma}(C'_{k+1})$. (Attr': Attractor set on \mathcal{G}')
- Let f_A be the attractor strategy on \mathcal{G}' into C'_{k+1} .



- Consider subgame \mathcal{G}'' : * $V_0'' = V_0' \smallsetminus Y$; * $V_1'' = V_1 \smallsetminus Y$; * $E' = W \cap (V'' \times V'')$; * $C'' : V'' \to \{0, \dots, k\}; c''(p) = c'(p) \text{ for all } p \in V''.$



- \mathcal{G}'' is still a game.
- Induction hypothesis: G'' is memoryless determined.
- Also: $W_{1-\sigma}'' = \emptyset$ (because $W_{1-\sigma}'' \subseteq W_{1-\sigma}$: assume Player (1σ) had a winning strategy from some position in V''. Then this strategy would win in \mathcal{G} , too, since Player σ has no chance to leave \mathcal{G}'' other than to $W_{1-\sigma}$.)
- Hence, there is a winning memoryless winning strategy f_{IH} for player σ from V''.



– We define:

$$f_{\sigma}(p) = \begin{cases} f_{IH}(p) & \text{if } p \in V''; \\ f_{A}(p) & \text{if } p \in Y \smallsetminus C'_{k+1}; \\ \text{min. successor in } V \smallsetminus W_{1-\sigma} & \text{if } p \in Y \cap C'_{k+1}; \\ \text{min. successor in } V & \text{otherwise.} \end{cases}$$