Automata, Games \& Verification

Summary \#1

- The set of natural numbers $\{0,1,2,3, \ldots\}$ is denoted by ω.
- An alphabet Σ is a finite set of symbols.
- An infinite sequence/string/word is a function from natural numbers to an alphabet:
$\alpha: \omega \rightarrow \Sigma$
Notation: $\alpha=\alpha(0) \alpha(1) \alpha(2) \ldots$
- The set of infinite words over alphabet Σ is denoted Σ^{ω}.
- An ω-language L is a subset of Σ^{ω}.

Definition 1. A (nondeterministic) Büchi automaton \mathcal{A} over alphabet Σ is a tuple (S, I, T, F) :

- S : a finite set of states;
- $I \subseteq S$: a subset of initial states;
- $T \subseteq S \times \Sigma \times S$: a set of transitions;
- $F \subseteq S$: a subset of accepting states.

Definition 2. A run of a nondeterministic Büchi automaton \mathcal{A} on an infinite input word $\alpha=\sigma_{0} \sigma_{1} \sigma_{2} \ldots$ is an infinite sequence of states $s_{0}, s_{1}, s_{2}, \ldots$ such that $s_{0} \in I$ and for all $i \in \omega,\left(s_{i}, \sigma_{i}, s_{i+1}\right) \in T$.

Definition 3. A Büchi automaton \mathcal{A} is deterministic when

- I is a singleton and
- $\forall \sigma \in \Sigma, \forall s, s_{0}, s_{1} \in S$.

$$
\left(s, \sigma, s_{0}\right) \in T \text { and }\left(s, \sigma, s_{1}\right) \in T \Rightarrow s_{0}=s_{1}
$$

Definition 4. The infinity set of an infinite word $\alpha \in \Sigma^{\omega}$ is defined as follows

$$
\operatorname{In}(\alpha)=\{\sigma \in \Sigma \mid \forall i \exists j . j \geqslant i \text { and } \alpha(j)=\sigma\} .
$$

Definition 5. [Büchi Acceptance Condition] A run r $=s_{0} s_{1} s_{2} \ldots$ of a Büchi automaton \mathcal{A} is accepting if

$$
\operatorname{In}(r) \cap F \neq \varnothing .
$$

Definition 6. A Büchi automaton \mathcal{A} accepts an infinite word α if there is an accepting run of \mathcal{A} on α.

Definition 7. The language recognized by Büchi automaton \mathcal{A} is defined as follows:

$$
\mathcal{L}(\mathcal{A})=\left\{\alpha \in \Sigma^{\omega} \mid \mathcal{A} \text { accepts } \alpha\right\} .
$$

Definition 8. An ω-language L is Büchi recognizable if there is a Büchi automaton \mathcal{A} such that $\mathcal{L}(\mathcal{A})=L$.

Definition 9. A Büchi automaton is complete if

$$
\forall s \in S, \sigma \in \Sigma, \exists s^{\prime} \in S .\left(s, \sigma, s^{\prime}\right) \in T
$$

Theorem 1.

For every Büchi automaton \mathcal{A}, there is a complete Büchi automaton \mathcal{A}^{\prime} such that $\mathcal{L}(\mathcal{A})=\mathcal{L}\left(\mathcal{A}^{\prime}\right)$.

BACKGROUND: The Kleene Theorem

Definition 10. The regular expressions are defined as follows:

- The constants ϵ and \varnothing are regular expressions.

$$
\mathcal{L}(\epsilon)=\{\epsilon\}, \mathcal{L}(\varnothing)=\varnothing .
$$

- If $a \in \Sigma$ is a symbol, then a is a regular expression.

$$
\mathcal{L}(\mathbf{a})=\{a\} .
$$

- If E and F are regular expressions, then $E+F$ is a regular expression: $\mathcal{L}(E+F)=\mathcal{L}(E) \cup \mathcal{L}(F)$.
- If E and F are regular expressions, then $E \cdot F$ is a regular expression: $\mathcal{L}(E \cdot F)=\{u v \mid u \in \mathcal{L}(E), v \in \mathcal{L}(F)\}$.
- If E is a regular expression, then E^{*} is a regular expression. $\mathcal{L}\left(E^{*}\right)=\left\{u_{1} u_{2} \ldots u_{n} \mid n \in \omega, u_{i} \in \mathcal{L}(E) \forall 0 \leqslant i \leqslant n\right\}$.

Definition 11. A language is regular if it is defined by a regular expression.

Theorem 2. The Kleene Theorem

A language is regular iff it is recognized by some finite word automaton.

