Automata, Games & Verification

Summary #1

- The set of natural numbers $\{0,1,2,3,\ldots\}$ is denoted by ω .
- An alphabet Σ is a finite set of symbols.
- An infinite sequence/string/word is a function from natural numbers to an alphabet:

$$\alpha:\omega\to\Sigma$$

Notation: $\alpha = \alpha(0)\alpha(1)\alpha(2)...$

- The set of infinite words over alphabet Σ is denoted Σ^{ω} .
- An ω -language L is a subset of Σ^{ω} .

Definition 1. A (nondeterministic) Büchi automaton \mathcal{A} over alphabet Σ is a tuple (S, I, T, F):

- *S* : a finite set of states;
- $I \subseteq S$: a subset of initial states;
- $T \subseteq S \times \Sigma \times S$: a set of transitions;
- $F \subseteq S$: a subset of accepting states.

Definition 2. A run of a nondeterministic Büchi automaton \mathcal{A} on an infinite input word $\alpha = \sigma_0 \sigma_1 \sigma_2 \dots$ is an infinite sequence of states s_0, s_1, s_2, \dots such that $s_0 \in I$ and for all $i \in \omega$, $(s_i, \sigma_i, s_{i+1}) \in T$.

Definition 3. A Büchi automaton A is deterministic when

- I is a singleton and
- $\forall \sigma \in \Sigma, \forall s, s_0, s_1 \in S$. $(s, \sigma, s_0) \in T \text{ and } (s, \sigma, s_1) \in T \implies s_0 = s_1$.

Definition 4. The infinity set of an infinite word $\alpha \in \Sigma^{\omega}$ is defined as follows

$$In(\alpha) = \{ \sigma \in \Sigma \mid \forall i \exists j . j \geqslant i \text{ and } \alpha(j) = \sigma \}.$$

Definition 5. [Büchi Acceptance Condition] A run $r = s_0 s_1 s_2 \dots$ of a Büchi automaton A is accepting if

$$In(r) \cap F \neq \emptyset$$
.

Definition 6. A Büchi automaton A accepts an infinite word α if there is an accepting run of A on α .

Definition 7. The language recognized by Büchi automaton A is defined as follows:

$$\mathcal{L}(\mathcal{A}) = \{ \alpha \in \Sigma^{\omega} \mid \mathcal{A} \text{ accepts } \alpha \}.$$

Definition 8. An ω -language L is Büchi recognizable if there is a Büchi automaton \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = L$.

Definition 9. A Büchi automaton is complete if

$$\forall s \in S, \sigma \in \Sigma, \exists s' \in S . (s, \sigma, s') \in T.$$

Theorem 1.

For every Büchi automaton A, there is a complete Büchi automaton A' such that $\mathcal{L}(A) = \mathcal{L}(A')$.

BACKGROUND: The Kleene Theorem

Definition 10. The regular expressions are defined as follows:

- The constants ϵ and \varnothing are regular expressions. $\mathcal{L}(\epsilon) = \{\epsilon\}, \mathcal{L}(\varnothing) = \varnothing$.
- If $a \in \Sigma$ is a symbol, then \mathbf{a} is a regular expression. $\mathcal{L}(\mathbf{a}) = \{a\}.$
- If E and F are regular expressions, then E+F is a regular expression: $\mathcal{L}(E+F)=\mathcal{L}(E)\cup\mathcal{L}(F)$.
- If E and F are regular expressions, then $E \cdot F$ is a regular expression: $\mathcal{L}(E \cdot F) = \{uv \mid u \in \mathcal{L}(E), v \in \mathcal{L}(F)\}.$
- If E is a regular expression, then E^* is a regular expression. $\mathcal{L}(E^*) = \{u_1 u_2 \dots u_n \mid n \in \omega, u_i \in \mathcal{L}(E) \, \forall \, 0 \leqslant i \leqslant n\}.$

Definition 11. A language is regular if it is defined by a regular expression.

Theorem 2. The Kleene Theorem

A language is regular iff it is recognized by some finite word automaton.