Automata, Games, and Verification

1. LTL-to-Alternating-Büchi (tutorial A: group G09, tutorial B: group G12)

Give an alternating Büchi automaton ${\cal A}$ and a nondeterministic Büchi automaton ${\cal A}'$ such that

 $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}') = models((\mathsf{F}p) \ \mathcal{W}(\mathsf{G}q)).$

Use the construction from the lecture to obtain A.

2. Complete Alternating Büchi Automata (tutorial A: group G11, tutorial B: group G02)

An alternating automaton is called *complete* iff neither *true* nor *false* are in the mapping of δ (run trees of complete alternating automata have only infinite branches and every input word has a run tree).

Prove or give a counter-example to the following statement:

Every language that is recognized by an alternating Büchi automaton is recognized by a complete alternating Büchi automaton.

3. Alternating vs. Deterministic Automata (challenge problem)

Consider the following family of languages L_n :

$$L_n = \{ v_1 \# u \, v_2 \, \$ \, u \, \beta \mid v_1 \in \{0, 1, \#\}^* \\ v_2 \in \{0, 1, \#\}^* \\ u \in \{0, 1\}^n \\ \beta \in \{0, 1, \#, \$\}^{\omega} \}.$$

- a) Construct a family \mathcal{A}_n of alternating Büchi automata with $\mathcal{L}(\mathcal{A}_n) = L_n$ such that each automaton \mathcal{A}_n has only O(n) states.
- b) Show that any deterministic Muller automaton that recognizes L_n has at least 2^{2^n} states.